• Title/Summary/Keyword: $Y_1$$Ba_2$$Cu_3$$O_{7-x}$

Search Result 100, Processing Time 0.028 seconds

Josephson Property and Magnetoresistance in Y$_1Ba_2Cu_3O_{7-x}$ and La$_{0.2}Sr_{0.8}MnO_3$ Films on Biepitaxial SrTiO$_3$/(MgO/)Al$_2O_3$(1120) (SrTiO$_3$/(MgO/)Al$_2O_3$(1120) 위에 쌍에피택셜하게 성장한 Y$_1Ba_2Cu_3O_{7-x}$와 La$_{0.2}Sr_{0.8}MnO_3$ 박막의 조셉슨 및 자기저항 특성연구)

  • Lee, Sang-Suk;Hwang, Do-Guwn
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.185-188
    • /
    • 1999
  • Biepitaxial Y$_1Ba_2Cu_3O_{7-x}$ (YBCO) and La$_{0.2}Sr_{0.8}MnO_3$ (LSMO) thin films have been prepared on SrTiO$_3$ buffer layer and MgO seed layer grown on Al$_2O_3$(11${\bar{2}}$0)substrates by dc-sputtering with hollow cylindrical targets, respectively. We charaterized Josephson properties and significantly large magnetoresistance in YBCO and LSMO films with 45$^{\circ}$ grain boundary junction, respectively. The observed working voltage (I$_cR_n$) at 77 K in grain boundary junction was below 10${\mu}$V, which is typical I$_cR_n$ value of single biepitaxial Josephson junction. The field magnetoresistance ratio (MR) of LSMO grain boundary juncoon at 77K was enhanced to 13%, which it was significant MR value with high magnetic field sensitivity at a low field of 250 Oe. These results indicate that inserting the insulating layer instead of the grain boundary layer with metallic phase can be possible to apply a new SIS Josephson junction and a novel magnetic device using spin-polarized tunneling junction.

  • PDF

Melt Textured Growth and Superconducting Properties of RE3+ Elements Doped YBCO Superconductors (RE3+원소가 첨가된 YBCO고온초전도체의 용융성장 및 초전도 특성)

  • 김소정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.231-237
    • /
    • 2003
  • RE(Nd, Sm) elements doped (RE/Y)$_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$ [(RE/Y)1.8] high $T_{c}$ superconductors were directionally grown by Top Seed Melt Growth(TSMG) process in air atmosphere. The (001)melt-textured N $d_{1.8}$B $a_{2.4}$C $u_{3.4}$ $O_{7-X}$(Nd1.8) seed crystals were used for achieving the c-axis alignment large grains perpendicular to surface of the samples. The (RE/Y)1.8 SEM micrographs of the melt-textured (RE/Y)1.8 samples revealed that the nonsuperconducting (RE/Y)211 inclusions are uniformly distributed in the superconducting (RE/Y)123 matrix except the region very close to the Nd seed crystal. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The Melt-textured (RE/Y)1.8 samples showed an onset $T_{c}$=91K and sharp superconducting transition. Also, the magnetization value of the (RE/Y)1.8 samples were compared with those of Y1.8 sample at 77 K. 77 K. 77 K. 77 K.K.

Superconducting property of ${YBa_2}({Cu_2.9}{N_0.1})_7-{\delta}$ (${YBa_2}({Cu_2.9}{N_0.1})_7-{\delta}$의 초전도 특성)

  • 한병성;한태희;황종선
    • Electrical & Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.278-283
    • /
    • 1992
  • 123 초전도체에 마그네틱 모멘트가 큰 Ni불순물을 도핑하여 제작한 $Y_{1}$ Ba(C $u_{2.9}$ $N_{0.1}$) $O_{7-{\delta}}$ 초전도체의 X-ray diffraction pattern, susceptibility, 온도변화등에 따른 전류-전압관계, 임계온도 등에 대하여 연구하였다. 제작된 시료는 매우 뚜렷한 orthorhombic 피크를 가진 123상을 나타내고 있었다. N=0.1의 시료에서는 적은 양의 Ni 불순물과 단면적인 무정형상태의 잘 반응된 YBa(Cu, Ni)$_{3}$ $O_{7-{\delta}}$의 orthorhombic구조를 나타내고 있다. 전반적인 실험 결과로 부터 Ni는 Y-Ba-Cu-O 초전도 시스템에서 초전도에 중요한 역할을 담당하지 않는다는 결론을 얻었다.얻었다.다.

  • PDF

Magnetic properties of polycrystalline Tl-1223 superconductor (Tl-1223 다결정 초전도체의 자기적 특성)

  • Baek R;Lee J. H;Kim Y. C;Jeong D. Y
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • Polycrystalline Tl-1223 superconductors with a chemical composition of (Tl, Pb, Bi)TEX>$ (Sr, Ba)<_2$$Ca_2$$Cu_3$$O_{x}$ were synthesized by the solid state reaction method. The optimum chemical composition was $Tl_{0.8}$ $Pb_{0.2}$ $Bi_{0.2}$ $Sr_{1.8}$ $Ba_{0.2}$ $Ca_{2.2}$ $Cu_3$$O_{x}$ And the optimum sintering temperature and time were $905^{\circ}C$ and 7.5h, respectively. The sample was evaluated for their superconducting properties by magnetization measurement. The critical temperature $T_{c}$ is 120 K and the critical current density $J_{c}$ (T=5K, 0T) is estimated to be ∼ $10^{5}$ A/$\textrm{cm}^2$ for $Tl_{0.8}$ $Pb_{0.2}$ $Bi_{0.2}$ $Sr_{1.8}$ $Ba_{0.2}$ $Ca_{2.2}$$Cu_3$$O_{x}$ .

  • PDF

Magnetic Properties of YBCO Superconductor Bulk Materials (YBCO 초전도체 Bulk 소재에 대한 자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.147-150
    • /
    • 2020
  • Relatively pure YBCO was first synthesized by heating a mixture of metal carbonates at temperatures between 1,000 and 1,300 K, resulting in the reaction: 4BaCO3+Y2(CO3)3+6CuCO3+(1/2-x)O2 → 2YBa2Cu3O7-x+1/3CO2. Modern syntheses of YBCO use the corresponding oxides and nitrates. The superconducting properties of YBa2Cu3O7-x are sensitive to the value of x, i.e., its oxygen content. Only those materials with 0≤x≤0.65 are superconducting below Tc, and when x ~ 0.07, the material superconducts at the highest temperature, i.e., 95 K, or in the highest magnetic fields, i.e., 120 T and 250 T when B is perpendicular and parallel to the CuO2 planes, respectively. In addition to being sensitive to the stoichiometry of oxygen, the properties of YBCO are influenced by the crystallization methods applied. YBCO is a crystalline material, and the best superconductive properties are obtained when crystal grain boundaries are aligned by careful control of annealing and quenching temperature rates. However, these alternative methods still require careful sintering to produce a quality product. New possibilities have arisen since the discovery of trifluoroacetic acid, a source of fluorine that prevents the formation of undesired barium carbonate (BaCO3). This route lowers the temperature necessary to obtain the correct phase at around 700℃. This, together with the lack of dependence on vacuum, makes this method a very promising way to achieve a scalable YBCO bulk.

Fabrication of YB $a_2$C $u_3$ $O_{7-x}$ film on a (100) SrTi $O_3$ single crystal substrate by single liquid source MOCVD method ((100) SrTi $O_3$ 단결정 기판위에 단일 액상 원료 MOCVD 법에 의한 YB $a_2$C $u_3$ $O_{7-x}$ 박막 제조)

  • Jun Byung-Hyuk;Choi Jun-Kyu;Kim Ho-Jin;Kim Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.16-20
    • /
    • 2004
  • YB $a_2$C $u_3$$O_{7-x}$ (YBCO) films were deposited on (100) SrTi $O_3$ single crystal substrates by a metal organic chemical vapor deposition (MOCVD) system of hot-wall type using single liquid source. Under the condition of the mole ratio of Y(tmhd)$_3$:Ba(tmhd)$_2$:Cu(tmhd)$_2$= 1:2.1:2.9. the deposition pressure of 10 Torr. the MO source line speed of 15 cm/min. the Ar/ $O_2$ flow rate of 800/800 sccm. YBCO films were prepared at the deposition temperatures of 780∼89$0^{\circ}C$. In case of the YBCO films with 2.2 ${\mu}{\textrm}{m}$ thickness deposited for 6 minutes at 86$0^{\circ}C$. XRD pattern showed complete c-axis growth and SEM morphology showed dense and crack-free surface. The atomic ratios of Ba/Y and Cu/Ba in the film were 1.92 and 1.56. respectively. The deposition rate of the film was as high as 0.37 ${\mu}{\textrm}{m}$/min. The critical temperature ( $T_{c.zero}$) of the film was 87K. The critical current of the film was 104 A/cm-width. and the critical current density was 0.47 MA/$\textrm{cm}^2$. For the thinner film of 1.3 ${\mu}{\textrm}{m}$ thickness. the critical current density of 0.62 MA/$\textrm{cm}^2$ was obtained.d.

Effects of Sm:Ba:Cu Composition Ratio on the Superconducting Properties of SmBCO Coated Conductor Prepared by using a Composition Gradient Method (SmBCO 초전도 선재 특성에 대한 Sm:Ba:Cu 조성비의 영향)

  • Kim, H.S.;Oh, S.S.;Jang, S.H.;Min, C.H.;Ha, H.S.;Ha, D.W.;Ko, R.K.;Youm, D.J.;Moon, S.H.;Chung, K.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • The effects of Sm:Ba:Cu composition ratio in SmBCO coated conductor on their superconducting properties were investigated. The SmBCO coated conductors were fabricated by reactive co-evaporation method using EDDC(Evaporation using Drum in Dual Chamber) system. In this system, we could obtain various samples with different composition ratios in a batch by the technique providing composition gradient at deposition zone. From the specimens prepared by EDDC system, we found that composition ratio is uniform parallel to the drum axis, but gradient along the circumferential direction of the drum. We installed a shield having parallelogram open area between the deposition chamber and the evaporation chamber in EDDC system, and attached a 30 cm long template, which is parallel to drum axis, onto the drum surface. In this configuration, we could obtain SmBCO coated conductors having a gradient composition along the length of template. We measured the composition ratios and surface morphologies with periodic interval by SEM and EDAX, and confirmed the profile of composition ratio. We also measured critical current using non-contact Hall probe critical current measurement system and thereby could plot composition ratio vs. critical current. The maximum critical current was obtained, and the surface morphology with the shape of roof tile was observed at the corresponding composition ratio of Sm:Ba:Cu = 1.01:1.99:4.87. It was also found that composition ratio had an effect on not only critical current but also surface morphology.

Design and Fabrication of High Temperature Superconducting Rapid Single Flux Quantum T Flip-Flop (고온 초전도 단자속 양자 T 플립 플롭 설계 및 제작)

  • Kim, J. H.;Kim, S. H.;Jung, K. R.;Kang, J. H.;Syng, G. Y.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.87-90
    • /
    • 2001
  • We designed a high temperature superconducting rapid single flux quantum(RSFQ) T flip-flop(TFF) circuit using Xic and WRspice. According to the optimized circuit parameters, we fabricated the TFF circuit with $Y_1$$Ba_2$Cu$_3$$O_{7-x}$(YBCO) interface-controlled Josephson junctions. The whole circuit was comprised of five epitaxial layers including YBCO ground plane. The interface-controlled Josephson junction was fabricated with natural junction barrier that was formed by interface-treatment process. In addition, we report second design for a new flip-flop without ground palne.e.

  • PDF

Comparative Study on the Fabrication of Single Grain YBCO Bulk Superconductors using Liquid Infiltration and Conventional Melt Growth Processes (단결정 YBCO 벌크 초전도체 제조에 대한 액상침투법과 고전적 용융공정의 비교연구)

  • Mahmood, Asif;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • With an aim of comparison, single grain Y-Ba-Cu-O (YBCO) bulk superconductors were fabricated using a liquid infiltration growth (LIG) process and a conventional melt growth (MTG) process with top seeding. The MTG process uses an $YBa_2Cu_3O_{7-x}$(Y123) powder as a precursor, while the LIG process uses $Y_2BaCuO_5(Y211)/Ba_3Cu_5O_8(Y035)$ pre-forms. The growth of a single Y123 domain on the top seed was successful in the both processes. Different feature between the two processes is the interior microstructure regarding the critical current density ($J_c$). The LIG-processed YBCO sample showed a lower porosity, more uniform distribution of Y211 particles and the enhanced Y211 refinement compared to the conventional MTG process. The $J_c$ improvement in the LIG process is attributed to the dispersion of finer Y211 particles as well as lower porosity within the Y123 superconducting matrix.

  • PDF