단결정 YBCO 벌크 초전도체 제조에 대한 액상침투법과 고전적 용융공정의 비교연구

Comparative Study on the Fabrication of Single Grain YBCO Bulk Superconductors using Liquid Infiltration and Conventional Melt Growth Processes

  • Mahmood, Asif (Neutron Science Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jun, Byung-Hyuk (Neutron Science Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute (KAERI))
  • 발행 : 2009.10.30

초록

With an aim of comparison, single grain Y-Ba-Cu-O (YBCO) bulk superconductors were fabricated using a liquid infiltration growth (LIG) process and a conventional melt growth (MTG) process with top seeding. The MTG process uses an $YBa_2Cu_3O_{7-x}$(Y123) powder as a precursor, while the LIG process uses $Y_2BaCuO_5(Y211)/Ba_3Cu_5O_8(Y035)$ pre-forms. The growth of a single Y123 domain on the top seed was successful in the both processes. Different feature between the two processes is the interior microstructure regarding the critical current density ($J_c$). The LIG-processed YBCO sample showed a lower porosity, more uniform distribution of Y211 particles and the enhanced Y211 refinement compared to the conventional MTG process. The $J_c$ improvement in the LIG process is attributed to the dispersion of finer Y211 particles as well as lower porosity within the Y123 superconducting matrix.

키워드

참고문헌

  1. S. Jin, T. H. Tiefel, R. C. Sherwood, R. B. Van Dover, M. E. Davis, G. W. Kammlott, and R. A. Fastnacht, Phys. Rev. B, 37, 7850 (1988). https://doi.org/10.1103/PhysRevB.37.7850
  2. M. Murakami, M. Morita, K. Doi, K. Miyamoto and H. Hamada, Jpn. J. Appl. Phys., 28, 1189 (1989). https://doi.org/10.1143/JJAP.28.1189
  3. K. Salama, V. Selvamanickam, L. Gao and K. Sun, Appl. Phys. Lett., 54 2352 (1989). https://doi.org/10.1063/1.101525
  4. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W.Xiaozu, Supercond. Sci. Technol., 3, 490 (1990). https://doi.org/10.1088/0953-2048/3/10/002
  5. C. Varanasi, P.J. McGinn, V. Pavate and E.P. Kvam, Physica C, 221, 46 (1994). https://doi.org/10.1016/0921-4534(94)90664-5
  6. A. M. Campbell and D. A. Cardwell, Cryogenics, 37, 567 (1997). https://doi.org/10.1016/S0011-2275(97)00068-4
  7. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. Van Dover, G. W. Kammlott, R. A. Fastnacht and H. D. Keith, Appl. Phys. Lett., 52, 2074 (1988). https://doi.org/10.1063/1.99751
  8. Y. L. Chen, H. M. Chan, M. P. Harmer, V. R. Todt, S. Sengupta and D. Shi, Physica C, 234, 232 (1994). https://doi.org/10.1016/0921-4534(94)90568-1
  9. N. H. Babu and T. Rajasekharan, L. Menon and S. K. Malik, J. Am. Ceram. Soc., 82, 2978 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02191.x
  10. H. Fang, Y. X. Zho, K. Ravi- chandar and K. Salama, Supercond. Sci. Technol., 17, 269 (2004). https://doi.org/10.1088/0953-2048/17/2/006
  11. S. Meslin and J. G. Noudem, Supercond. Sci. Technol., 17, 1324 (2004). https://doi.org/10.1088/0953-2048/17/11/014
  12. A. Mahmood, B. H. Jun, H. W. Park, C. J. Kim, Physica C, 468, 1350 (2008). https://doi.org/10.1016/j.physc.2008.05.109
  13. K. Iida, N. H. Babu, D. A. Cardwell. Supercond. Sci. Technol., 20, 1065 (2007). https://doi.org/10.1088/0953-2048/20/10/028
  14. C. P. Bean, Phys. Rev. Lett., 8, 250 (1962). https://doi.org/10.1103/PhysRevLett.8.250
  15. C. J. Kim, H. G. Lee, K. B. Kim, G. W. Hing, J. Mater. Res., 10, 2235 (1995). https://doi.org/10.1557/JMR.1995.2235
  16. M. Murakami, S. Gotoh, H. Fujimoto, K. Yamaguchi, N. Koshizuka, S. Tanaka, Supercond. Sci. Technol., 4, S43 (1991). https://doi.org/10.1088/0953-2048/4/1S/005