• Title/Summary/Keyword: $TiO_2-SiO_2$

Search Result 1,732, Processing Time 0.061 seconds

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Reversely Zoned Compositional Variations and their Origins of the Andong Pluton, Andong Batholith, Korea (안동심성암체의 역누대 초성변화와 그 성인)

  • 황상구;이보현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.75-95
    • /
    • 2002
  • The Andong pluton in the Andong Batholith is composed of comagmatic plutonic rocks, in which the lithofacies comprise hornblende biotite tonalite in the central paft biotite granodiorite in the marginal paft and porphyritic biotite granite at the topside (noJthea~tern paft) of the pluton. The pluton is petrographically and petrochemically zoned, having more mafic center than margin and topside. Distribution pallern of the lithofacies represents a reverse zoning in the pluton. Modal and chemical data in the pluton show progressive and gradual compositional variations from the centrer via the margin to the topside. Quartz and K-teldspar increase toward the topside of the pluton, whereas hornblende, biotite and color index increase toward the center. The bulk composition in the pluton is also reversely zoned, with high $Si0_2$ and $K_{2}O$ in the topside facies, and high MnO, CaO, $Ti0_2$, $Fe_{2}O_{3}$t, MgO and $P_{2}O_{5}$ in the central facies. The reverse zoning is also evident in higher Cr. V, Ni, Sc and Sr of the more mafic tonalite in the interior. The reversely zoned pluton results from remobilization (resurgence) of the lower more mafic compositional zone into the upper more felsic zones of the pluton modified by thennogravitational diffusion and fractional crystallization. In the initial stages of evolution, the pluton was a petrochemical system that fonned chemical compositional zonation with mafic tonalitic magma in the lower. granodioritic one in the middle and granitic one in the upper paft of the magma chamber. Periodic influxes of more mafic magma from the ba~e resulted in mingling of liquids and redistribution of minerals, and may have triggered the remobilil.ation of the lower compositional zone into the upper more felsic zones.

Study of characteristics of SBT etching using $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마를 이용한 SBT 박막 식각에 관한 연구)

  • Kim, Dong-Pyo;Seo, Jung-Woo;Kim, Seung-Bum;Kim, Tae-Hyung;Chang, Eui-Goo;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1553-1555
    • /
    • 1999
  • Recently, $SrBi_2Ta_2O_9$(SBT) and $Pb(ZrTi)O_3$(PZT) were much attracted as materials of capacitor for ferroelectric random access memory(FRAM) showing higher read/write speed, lower power consumption and nonvolartility. Bi-layered SBT thin film has appeared as the most prominent fatigue free and low operation voltage for use in nonvolatile memory. To highly integrate FRAM, SBT thin film should be etched. A lot of papers on SBT thin film and its characteristics have been studied. However, there are few reports about SBT thin film due to difficulty of etching. In order to investigate properties of etching of SBT thin film, SBT thin film was etched in $CF_4$/Ar gas plasma using magnetically enhanced inductively coupled plasma (MEICP) system. When $CF_4/(CF_4+Ar)$ is 0.1, etch rate of SBT thin film was $3300{\AA}/min$, and etch rate of Pt was $2495{\AA}/min$. Selectivities of SBT to Pt. $SiO_2$ and photoresist(PR) were 1.35, 0.6 and 0.89, respectively. With increasing $CF_4$ gas, etch rate of SBT thin film and $P_t$ decreased.

  • PDF

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Thickness Determination of Ultrathin Gate Oxide Grown by Wet Oxidation

  • 장효식;황현상;이확주;조현모;김현경;문대원
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.107-107
    • /
    • 2000
  • 최근 반도체 소자의 고집적화 및 대용량화의 경향에 다라 MOSFET 소자 제작에 이동되는 게이트 산화막의 두께가 수 nm 정도까지 점점 얇아지는 추세이고 Giga-DRAM급 차세대 UNSI소자를 제작하기 위해 5nm이하의 게이트 절연막이 요구된다. 이런 절연막의 두께감소는 게이트 정전용량을 증가시켜 트랜지스터의 속도를 빠르게 하며, 동시에 저전압동작을 가능하게 하기 때문에 게이트 산화막의 두께는 MOS공정세대가 진행되어감에 따라 계속 감소할 것이다. 따라서 절연막 두께는 소자의 동작 특성을 결정하는 중요한 요소이므로 이에 대한 정확한 평가 방법의 확보는 공정 control 측면에서 필수적이다. 그러나, 절연막의 두께가 작아지면서 게이트 산화막과 crystalline siliconrksm이 계면효과가 박막의 두께에 심각한 영향을 주기 때문에 정확한 두께 계측이 어렵고 계측방법에 따라서 두께 계측의 차이가 난다. 따라서 차세대 반도체 소자의 개발 및 양산 체계를 확립하기 위해서는 산화막의 두께가 10nm보다 작은 1nm-5nm 수준의 박막 시료에 대한 두께 계측 방법이 확립이 되어야 한다. 따라서, 본 연구에서는 습식 산화 공정으로 제작된 3nm-7nm 의 게이트 절연막을 현재까지 알려진 다양한 두께 평가방법을 비교 연구하였다. 절연막을 MEIS (Medim Energy Ion Scattering), 0.015nm의 고감도를 가지는 SE (Spectroscopic Ellipsometry), XPS, 고분해능 전자현미경 (TEM)을 이용하여 측정 비교하였다. 또한 polysilicon gate를 가지는 MOS capacitor를 제작하여 소자의 Capacitance-Voltage 및 Current-Voltage를 측정하여 절연막 두께를 계산하여 가장 좋은 두께 계측 방법을 찾고자 한다.다. 마이크로스트립 링 공진기는 링의 원주길이가 전자기파 파장길이의 정수배가 되면 공진이 일어나는 구조이다. Fused quartz를 기판으로 하여 증착압력을 변수로 하여 TiO2 박막을 증착하였다. 그리고 그 위에 은 (silver)을 사용하여 링 패턴을 형성하였다. 이와 같이 공진기를 제작하여 network analyzer (HP 8510C)로 마이크로파 대역에서의 공진특서을 측정하였다. 공진특성으로부터 전체 품질계수와 유효유전율, 그리고 TiO2 박막의 품질계수를 얻어내었다. 측정결과 rutile에서 anatase로 박막의 상이 변할수록 유전율은 감소하고 유전손실은 증가하는 결과를 나타내었다.의 성장률이 둔화됨을 볼 수 있다. 또한 Silane 가스량이 적어지는 영역에서는 가스량의 감소에 의해 성장속도가 둔화됨을 볼 수 있다. 또한 Silane 가스량이 적어지는 영역에서는 가스량의 감소에 의해 성장속도가 줄어들어 성장률이 Silane가스량에 의해 지배됨을 볼 수 있다. UV-VIS spectrophotometer에 의한 비정질 SiC 박막의 투과도와 파장과의 관계에 있어 유리를 기판으로 사용했으므로 유리의투과도를 감안했으며, 유리에 대한 상대적인 비율 관계로 투과도를 나타냈었다. 또한 비저질 SiC 박막의 흡수계수는 Ellipsometry에 의해 측정된 Δ과 Ψ값을 이용하여 시뮬레이션한 결과로 비정질 SiC 박막의 두께를 이용하여 구하였다. 또한 Tauc Plot을 통해 박막의 optical band gap을 2.6~3.7eV로 조절할 수 있었다. 20$0^{\circ}C$이상으로 증가시켜도 광투과율은 큰 변화를 나타내지 않았다.부터 전분-지질복합제의 형성 촉진이 시사되었다.이것으로 인하여 호화억제에 의한 노화 방지효과가 기대되었지만 실제로 빵의 노화는 현저히 진행되었다

  • PDF

Effect of Post-Annealing and ZTO Thickness of ZTO/GZO Thin Film for Dye-Sensitized Solar Cell

  • Song, Sang-U;Lee, Gyeong-Ju;No, Ji-Hyeong;Park, On-Jeon;Kim, Hwan-Seon;Ji, Min-U;Mun, Byeong-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.405-406
    • /
    • 2013
  • Ga-doped ZnO (GZO)는 $300^{\circ}C$ 이상의 온도에서는 전기적으로 불안정하기 때문에 CIGS, CdTe, DSC와 같은 태양전지의 높은 공정온도 때문에 사용이 제한적이다. ZTO thin film은 Al2O3, SiO2, TiO2, ZnO tihin film과 비교하여 산소 및 수분에 대하여 투과성이 상대적으로 낮은 것으로 알려져 있다. 따라서 GZO single layer에 비하여 ZTO-GZO multi-layer를 구성하여 TCO를 제작하면, 높은 공정온도에서도 사용 가능하다. 실제 제작된 GZO single layer (300 nm)에서 비저항이 $7.69{\times}10^{-4}{\Omega}{\cdot}cm$에서 $500^{\circ}C$에서 열처리 후 $7.76{\times}10^{-2}{\Omega}{\cdot}cm$으로 급격하게 상승한다. ZTO single layer (420 nm)는 as-grown에서는 측정 불가했지만, $400^{\circ}C$에서 열처리 후 $3.52{\times}10^{-1}{\Omega}{\cdot}cm$ $500^{\circ}C$에서 열처리 후 $4.10{\times}10^{-1}{\Omega}{\cdot}cm$으로 열처리에 따른 큰 변화가 없다. 또한 ZTO-GZO multi-layer (720 nm)의 경우 비저항이 $2.11{\times}10^{-3}{\Omega}{\cdot}cm$에서 $500^{\circ}C$에서 열처리 후 $3.67{\times}10^{-3}{\Omega}{\cdot}cm$으로 GZO에 비하여 상대적으로 변화폭이 작다. 또한 ZTO의 두께에 따른 영향을 확인하기 위하여 ZTO를 2 scan, 4 scan, 6 scan 공정 진행 및 $500^{\circ}C$에서 열처리 후 ZTO, ZTO-GZO thin film의 비저항을 측정하였다. ZTO의 경우 $3.34{\times}10^{-1}{\Omega}{\cdot}cm$ (2 scan), $3.62{\times}10^{-1}{\Omega}{\cdot}cm$ (4 scan), $4.1{\times}10^{-1}{\Omega}{\cdot}cm$ (6 scan)으로 큰 차이가 없으며, ZTO-GZO에서도 $3.73{\times}10^{-3}{\Omega}{\cdot}cm$ (2 scan), $3.42{\times}10^{-3}{\Omega}{\cdot}cm$ (4 scan), $3.67{\times}10^{-3}{\Omega}{\cdot}cm$ (6 scan)으로 큰 차이가 없음을 확인하였다. 염료감응 태양전지에 적용하여 기존에 사용되는 FTO대신에 ZTO-GZO를 사용하며, 가격적 측면, 성능적 측면에서 개선 가능할 것으로 생각된다.

  • PDF

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.

High Speed Cu Filling into Tapered TSV for 3-dimensional Si Chip Stacking (3차원 Si칩 실장을 위한 경사벽 TSV의 Cu 고속 충전)

  • Kim, In Rak;Hong, Sung Chul;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.388-394
    • /
    • 2011
  • High speed copper filling into TSV (through-silicon-via) for three dimensional stacking of Si chips was investigated. For this study, a tapered via was prepared on a Si wafer by the DRIE (deep reactive ion etching) process. The via had a diameter of 37${\mu}m$ at the via opening, and 32${\mu}m$ at the via bottom, respectively and a depth of 70${\mu}m$. $SiO_2$, Ti, and Au layers were coated as functional layers on the via wall. In order to increase the filling ratio of Cu into the via, a PPR (periodic pulse reverse) wave current was applied to the Si chip during electroplating, and a PR (pulse reverse) wave current was applied for comparison. After Cu filling, the cross sections of the vias was observed by FE-SEM (field emission scanning electron microscopy). The experimental results show that the tapered via was filled to 100% at -5.85 mA/$cm^2$ for 60 min of plating by PPR wave current. The filling ratio into the tapered via by the PPR current was 2.5 times higher than that of a straight via by PR current. The tapered via by the PPR electroplating process was confirmed to be effective to fill the TSV in a short time.

Design and Properties Related to Anti-reflection of 1.3μm Distributed Feedback Laser Diode (1.3μm 분포 괴환형 레이저 다이오드의 무반사 설계 및 특성)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Hong, Kyung-Jin;Kim, Hwe-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.248-251
    • /
    • 2009
  • We have investigated the effect of the quality of 1.3 um distributed feed back laser diode (DFB-LD) on the design of anti-reflection (AR) coatings. Optimal condition of AR coating to prevent internal feedback from both facets and reduce the reflection-induced intensity noise of laser diode was simulated with Macleod Simulator. Coating materials used in this work were ${Ti_3}{O_5}$ and $SiO_2$, of which design thickness were 105 nm and 165 nm, respectively. AR coating films were deposited by Ion-Assisted Deposition system. The electrical and optical properties of 1.3 um laser diode were characterized by Bar tester and Chip tester. Threshold current and slop-efficiency of DFB-LD were 27.56 mA 0.302 W/A. Far field pattern and wavelength of DFB-LD were $22.3^{\circ}(Horizontal){\times}24.4^{\circ}$ (Vertical), 1313.8 nm, respectively.

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.611-614
    • /
    • 2018
  • Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.