• 제목/요약/키워드: $TiO_2$ nanopowders

검색결과 29건 처리시간 0.031초

0.5 vol% TiO2 나노분말을 분산시킨 n형 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성 (Thermoelectric Properties of the n-type Bi2(Te0.9Se0.1)3 Processed by Hot Pressing with Dispersion of 0.5 vol% TiO2 Nanopowders)

  • 박동현;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제20권1호
    • /
    • pp.15-19
    • /
    • 2013
  • 용해/분쇄법으로 제조한 n형 $Bi_2(Te_{0.9}Se_{0.1})_3$ 분말에 0.5 vol% $TiO_2$ 나노분말을 분산시켜 가압소결 후, $TiO_2$ 나노분말의 분산이 $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체의 열전특성에 미치는 영향을 분석하였다. $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체는 $2.93{\times}10^{-3}/K$의 최대 성능지수 및 1.02의 최대 무차원 성능지수의 우수한 열전특성을 나타내었다. 0.5 vol% $TiO_2$ 나노분말의 첨가에 의해 $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체의 최대 성능지수가 $2.09{\times}10^{-3}/K$로 감소하였으며, 최대 무차원 성능지수는 0.68로 저하하였다.

고주파 유도 가열에 의한 나노구조 Mg4Al2Ti9O25 합성 및 소결과 기계적 성질 (Synthesis and Sintering of Nanostructured Mg4Al2Ti9O25 by High-Frequency Induction Heating and Its Mechanical Properties)

  • 강현수;도정만;윤진국;손인진
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.67-72
    • /
    • 2014
  • Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of $Al_2O_3$, MgO and $TiO_2$ were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound $Mg_4Al_2Ti_9O_{25}$ by high-frequency induction heating process. The highly dense nanostructured $Mg_4Al_2Ti_9O_{25}$ compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the $Mg_4Al_2Ti_9O_{25}$ compound were evaluated.

Magnetic and Photo-catalytic Properties of Nanocrystalline Fe Doped $TiO_2$ Powder Synthesized by Mechanical Alloying

  • Uhm, Y.R.;Woo, S.H.;Lee, M.K.;Rhee, C.K.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.955-956
    • /
    • 2006
  • Fe-doped $TiO_2$ nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of $TiO_2$.

  • PDF

수열처리에 의한 TiO2 나노 튜브 센서의 가스 검지 특성 (Characteristics of TiO2 Nanotube Gas Sensor Preparedby Hydrothermal Treatment)

  • 서민현;오상진;테츠야 키다;켄고 시마노에;허증수
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.437-441
    • /
    • 2007
  • Preparation and morphology control of $TiO_2$ nano powders for gas sensor applications are investigated. $TiO_2$ nanopowders with rutile and anatase structures were prepared by controlling the pH value of a precursor solution without any heat treatment. The mean particle size of $TiO_2$ powders were below 10nm. The prepared $TiO_2$ nano powders were hydrothermal treated by NaOH solution. The sample was washed in HCl solution. As a result and $TiO_2$ nanotubes were formed. The lengths of $TiO_2$ nanotube were $1{\mu}m$ and the diameters were 10nm. Crystal structure and microstructure of $TiO_2$ nanotube were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). As-prepared $TiO_2$ nanotube powders have several advantages of nano particle size and high surface area and could be a prominent candidate for nano-sensors. The sensitivity of $TiO_2$ nanotube sensor was measured for toluene and NO in this study.

TiO2 나노분말 제조시 HCI과 NH4OH의 첨가량에 따른 반응양상과 pH의 영향 (Reaction morphology depending on the amounts of HCl and NH4OH and effect of pH on the preparation of TiO2 nanopowder)

  • 임창성;오원춘
    • 분석과학
    • /
    • 제20권4호
    • /
    • pp.302-307
    • /
    • 2007
  • $TiO_2$ 나노분말 제조시 HCl과$NH_4OH$의 첨가량에 따른 반응양상과 pH의 영향을 고찰하였다. Titanium tetra-isopropoxide의 가수분해 반응을 이용하여 nanosize의 $TiO_2$ 분말를 합성하였고, 촉매로 HCl과$NH_4OH$를 사용하였다. 촉매의 첨가량에 따른 반응양상과 생성된 $TiO_2$ 분말의 특성 변화를 조사하였다. 염기성 촉매인$NH_4OH$를 사용하였을 경우에 균질한 형상의 분말 형태의 $TiO_2$를 합성할 수 있었으며, 산성 촉매인 HCl을 사용하여 pH가 5.04 이하일 경우에는 괴상이나 과립의 형태로 생성되었다. 사용한 촉매의 종류와 양에 따라 저온의 결정상인 anatase의 생성속도와 보다 안정한 rutile 상으로의 상전이 속도가 영향을 받았다.

Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles

  • Anwander, Melissa;Rosentritt, Martin;Schneider-Feyrer, Sibylle;Hahnel, Sebastian
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권6호
    • /
    • pp.482-485
    • /
    • 2017
  • PURPOSE. This laboratory study aimed to investigate the effect of doping an acrylic denture base resin material with nanoparticles of ZnO, CaO, and $TiO_2$ on biofilm formation. MATERIALS AND METHODS. Standardized specimens of a commercially available cold-curing acrylic denture base resin material were doped with 0.1, 0.2, 0.4, or 0.8 wt% commercially available ZnO, CaO, and $TiO_2$ nanopowder. Energy dispersive X-ray spectroscopy (EDX) was used to identify the availability of the nanoparticles on the surface of the modified specimens. Surface roughness was determined by employing a profilometric approach; biofilm formation was simulated using a monospecies Candida albicans biofilm model and a multispecies biofilm model including C. albicans, Actinomyces naeslundii, and Streptococcus gordonii. Relative viable biomass was determined after 20 hours and 44 hours using a MTT-based approach. RESULTS. No statistically significant disparities were identified among the various materials regarding surface roughness and relative viable biomass. CONCLUSION. The results indicate that doping denture base resin materials with commercially available ZnO, CaO, or $TiO_2$ nanopowders do not inhibit biofilm formation on their surface. Further studies might address the impact of varying particle sizes as well as increasing the fraction of nanoparticles mixed into the acrylic resin matrix.