• Title/Summary/Keyword: $TiO_2$ membrane

Search Result 139, Processing Time 0.023 seconds

A Study on the Treatment of Secondary Effluent by ${\gamma}-ray$ Irradiation ($\gamma$-선의 조사를 이용한 하수처리장 방류수 처리에 관한 연구)

  • 이면주;정영도;박순달
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.106-114
    • /
    • 1998
  • This study was carried out for the purpose of industrial reuse of effluent released from activated sludge unit by $\gamma $-ray irradiation technique. The dissolved organic carbon in the effluent of an activated sludge unit is mostly refractory or inert material which are difficult to be degraded by micro organism. The effluent generated from activated sludge unit was irradiated with Co$^{60}$ $\gamma $-ray under condition of air bubbling. The effects of irradiation on the pH, COD, TOC, color, molecular weight distribution were investigated by membrane filtration and u.v.-spectrum analysis. With increasing dose, the TOC was decreased smoothly. The COD was increased at lower dose, while the COD was decreased at higher dose. The TOC and COD, however, were decreased smoothly when TiO$_{2}$ was added to the solution. It was thought that the differential decreasing trend of COD and TOC in according to the absence or presence of TiO$_{2}$ was due to the molecular weight distribution shifted from group of higher molecular weight to group of lower one which are more easy to be decomposed. The removal efficiency of color was 71.5% and it was increased to 85.7% when TiO$_{2}$ was added to the solution. The $\gamma $-ray irradiation was effective on the production of chlorine.

  • PDF

Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구)

  • Yong Hyeon Kim;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.242-251
    • /
    • 2023
  • The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.

A Study on The Preservation Efficacy Reduction of Parahydroxybenzoic Acid Derivatives in Surfactant and Inorganic Powder Materials of Emulsion System (파라옥시 안식향산 유도체가 유화계의 계면활성제 및 무기 분말재료에서 방부효능 저하에 관한 연구)

  • Sung, Ki-Chun;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.241-247
    • /
    • 1999
  • In this study, the relation of the preservation efficacy reduction with methyl paraben of parahydroxybenzoic acid derivatives was investigated using the dialysis membrane method with tween-80 of surfactant and $TiO_2/Talc$ of inorganic powder meterial from emulsion system. It was found that the preservation efficacy of tween-80 and $TiO_2/Talc$ from emulsion system was reduced due to the adsorption of methyl paraben. According to the microbe test, In case of tween-80, MBC appeared in 0.19 w/v% and in case of $TiO_2/Talc$, MBC appeared in 0.22w/v% / 0.23w/v%. In general, the equation of Talc's adsorption weight($A{\cdot}W$) has a tendency to show in $A{\cdot}W=11.5C^{0.745}$

Characteristics of Surface Micromachined Pyroelectric Infrared Ray Focal Plane Array

  • Ryu, Sang-Ouk;Cho, Seong-Mok;Choi, Kyu-Jeong;Yoon, Sung-Min;Lee, Nam-Yeal;Yu, Byoung-Gon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • We have developed surface micromachined Infrared ray (IR) focal plane array (FPA), in which single $SiO_{2}$ layer works as an IR absorbing plate and $Pb(Zr_{0.3}Ti_{0.7})O_{2}$ thin film served as a thermally sensitive material. There are some advantages of applying $SiO_{2}$ layer as an IR absorbing layer. First of all, the $SiO_{2}$ has good IR absorbance within $8{\sim}12{\mu}m$ spectrum range. Measured value showed about 60% absorbance of incident IR spectrum in the range. $SiO_{2}$ layer has another important merit when applied to the top of Pt/PZT/Pt stack because it works also as a supporting membrane. Consequently, the IR absorbing layer forms one body with membrane structure, which simplifies the whole MEMS process and gives robustness Ito the structure.

Effects of conditions for anodization and cyclic precalcification treatments on surface characteristics and bioactivity (양극산화와 석회화 순환처리 조건이 타이타늄 박판의 표면특성 및 생체활성에 미치는 영향)

  • Jang, Yong-Seok;Lee, Kang-Gyu;Jeon, Woo-Yong;Han, A-Lum;Lim, Chung-Ha;Lee, Min-Ho;Bae, Tae-Sung
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.243-256
    • /
    • 2018
  • The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A $30{\times}20{\times}0.08mm$ titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with $HNO_3:HF:H_2O$ in a ratio of 12: 7: 81. The $TiO_2$ nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube $TiO_2$ nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.

Preparation of Anatase Particles through Electro-Dialysis of TiCl4 Aqueous Solution

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.325-331
    • /
    • 2016
  • Anatase particles of titanium dioxide were prepared from $TiCl_4$ aqueous solution by using an electro-dialysis [ED] process. For the preparation of an aqueous solution of $TiCl_4$ precipitates, $TiCl_4$ liquid frozen in ice was transferred to a neck flask and then hydrolyzed using deionized [DI] $H_2O$. During the hydrolysis of the $TiCl_4$ solution at $0^{\circ}C$, a slurry solution of $TiOCl_2$ was obtained and the color changed from red to orange. The ED process was applied for the removal of chlorine content in the slurry solution. Two kinds of hydrolyzed slurry solution with lower [$Ti^{4+}$] and higher [$Ti^{4+}$] were sampled and the ED process was applied for the samples according to the removal time of [$Cl^-$]. With de-chlorination, the solution status changed from sol to gel and the color quickly changed to blue. Finally, white crystalline powders were formed and the phase was confirmed by XRD to be anatase crystallites. The morphology of the hydrous titania particles in the solution was observed by FE-SEM. The hydrous titania particles were nano-crystalline, and easily coagulated with drying.

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Ceramic Based Photocatalytic Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹 기반 광촉매 분리막: 총설)

  • Kwak, Yeonsoo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.181-190
    • /
    • 2022
  • Membrane separation provides various advantages including cost effectiveness and high efficiency over traditional wastewater treatment methods such as flocculation and adsorption. However, the effectiveness of membrane separation greatly declines due to membrane fouling, where pollutants are accumulated on the membrane surface. Among different groups of membranes, ceramic membranes can provide good antifouling properties due to its hydrophilicity and chemical stability. In addition, composite membranes such as graphene oxide modified membranes can help prevent membrane fouling. Recently, hybrid photocatalytic membranes have been proposed as a solution to prevent membrane fouling and provide synergetic effects. Membrane separation can solve the disadvantages of photocatalytic oxidation such as low reutilization rate, while photocatalytic oxidation can help reduce membrane fouling.

Photocatalytic Membrane Reactor for VOC Decomposition Using Pt-Modified Titanium Oxide Membranes

  • Toshinori Tsuru;no, Takehiro-Kan;Tomohisa Yoshioka;Masashi Asaeda
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.39-42
    • /
    • 2004
  • Ceramic membranes have attracted a great attention because they have excellent resistance to most organic solvents and can be used over a wide temperature range. Especially, titania (titanium oxide, TiO$_2$) shows excellent chemical resistance and can be used both acidic and alkali solutions, and therefore, titania is one of the most promising materials for the preparation of porous membranes; titania membranes having pore sizes in the range of nanofiltration (NF) to ultrafiltration (UF) membrane have been prepared by the sol-gel process (Tsuru 2001).(omitted)

  • PDF

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.201-211
    • /
    • 2011
  • The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.