DOI QR코드

DOI QR Code

Effects of conditions for anodization and cyclic precalcification treatments on surface characteristics and bioactivity

양극산화와 석회화 순환처리 조건이 타이타늄 박판의 표면특성 및 생체활성에 미치는 영향

  • Jang, Yong-Seok (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University) ;
  • Lee, Kang-Gyu (Department of Orthodontics, School of Dentistry, Chonbuk National University) ;
  • Jeon, Woo-Yong (Department of Dental Technology, Gwangyang Health College) ;
  • Han, A-Lum (Department of Family Medicine, College of Medicine, WonKwang University) ;
  • Lim, Chung-Ha (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University) ;
  • Lee, Min-Ho (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University) ;
  • Bae, Tae-Sung (Department of Dental Biomaterials, School of Dentistry, Chonbuk National University)
  • 장용석 (전북대학교 치과대학 치과생체재료학교실) ;
  • 이강규 (전북대학교 대학원 치의학과 치과교정학교실) ;
  • 전우용 (광양보건대학 치기공과) ;
  • 한아름 (원광대학교 의과대학 가정의학과) ;
  • 임청하 (전북대학교 치과대학 치과생체재료학교실) ;
  • 이민호 (전북대학교 치과대학 치과생체재료학교실) ;
  • 배태성 (전북대학교 치과대학 치과생체재료학교실)
  • Received : 2018.10.01
  • Accepted : 2018.10.24
  • Published : 2018.12.30

Abstract

The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A $30{\times}20{\times}0.08mm$ titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with $HNO_3:HF:H_2O$ in a ratio of 12: 7: 81. The $TiO_2$ nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube $TiO_2$ nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.

본 연구에서는 생체활성 타이타늄 차폐막의 제조에 필요한 기초적인 자료를 얻기 위해서 타이타늄 박판의 양극산화처리와 석회화 순환처리의 조건 및 이들 표면처리가 표면특성과 생체활성도에 미치는 영향에 대하여 조사하였다. $30{\times}20{\times}0.08mm$의 타이타늄 판을 준비한 다음 $HNO_3:HF:H_2O$를 12 : 7 : 81 로 혼합한 용액에서 10 초 동안 산세처리 후 사용하였다. 타이타늄 차폐막의 비표면적을 증가시키기 위해서 나노튜브 $TiO_2$층을 형성한 후, 하이드록시아파타이트의 석출에 따른 생체활성도를 개선하기 위해서 석회화 순환처리를 하였다. 표면처리된 표면특성을 평가하기 위해서, 부식에 대한 저항성시험, 젖음성 검사, 유사체액 침적시험을 실시하였다. 양극산화처리로 형성된 나노튜브들은 상대적으로 큰 직경의 튜브들과 작은 직경의 튜브들로 구성되어 있었으며, 내부는 비어있고 외벽은 서로 결합되어 있는 구조를 보였다. 연속적으로 시행된 석회화 순환처리로 나노튜브층에 하이드록시아파타이트 석출물이 침투되어 결합이 일어났으며, 순환처리 회수가 증가함에 따라서 HAp 의 석출량이 비례적으로 증가하는 경향을 보였다. 결론적으로, 타이타늄 차폐막의 표면에 나노튜브 $TiO_2$ 층을 형성한 후 석회화 순환처리를 하여서 HAp 의 석출을 유도하는 것은 생체활성도 개선에 크게 기여할 수 있다는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Buser D, Dula K, Hirt HP, Schenk RK. Lateral ridge augmentation using autografts and barrier membranes: a clinical study with 40 partially edentulous patients. Journal of oral and maxillofacial surgery. 1996;54(4):420-32. https://doi.org/10.1016/S0278-2391(96)90113-5
  2. Chiapasco M, Abati S, Romeo E, Vogel G. Clinical outcome of autogenous bone blocks or guided bone regeneration with e-PTFE membranes for the reconstruction of narrow edentulous ridges. Clinical oral implants research. 1999;10(4):278-88. https://doi.org/10.1034/j.1600-0501.1999.100404.x
  3. Eisig SB, Ho V, Kraut R, Lalor P. Alveolar ridge augmentation using titanium micromesh: An experimental study in dogs. Journal of oral and maxillofacial surgery. 2003;61(3):347-53. https://doi.org/10.1053/joms.2003.50064
  4. Van Steenberghe D, Johansson C, Quirynen M, Molly L, Albrektsson T, Naert I. Bone augmentation by means of a stiff occlusive titanium barrier: A study in rabbits and humans. Clinical oral implants research. 2003;14(1):63-71. https://doi.org/10.1034/j.1600-0501.2003.140109.x
  5. Becker W, Becker BE, Mellonig J, Caffesse RG, Warrer K, Caton JG, et al. A prospective multi-center study evaluating periodontal regeneration for Class II furcation invasions and intrabony defects after treatment with a bioabsorbable barrier membrane: 1-year results. Journal of periodontology. 1996;67(7):641-9. https://doi.org/10.1902/jop.1996.67.7.641
  6. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science. 2007;11(1-2):3-18. https://doi.org/10.1016/j.cossms.2007.08.004
  7. Sieber I, Hildebrand H, Friedrich A, Schmuki P. Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications. 2005;7(1):97-100. https://doi.org/10.1016/j.elecom.2004.11.012
  8. Tsuchiya H, Macak JM, Taveira L, Schmuki P. Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chemical Physics Letters. 2005;410(4-6):188-91. https://doi.org/10.1016/j.cplett.2005.05.065
  9. Moon Y, Lee M, Song K, Bae T. Characteristics of TiO2 nanotubes on Ti-6Al-4V alloy. J Korean Res Soc Dent Mater. 2008;35:339-48.
  10. Aninwene GE, II CY, Webster TJ. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces. International journal of nanomedicine. 2008;3(2):257.
  11. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron-and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs. 2004;178(1):13-22. https://doi.org/10.1159/000081089
  12. Feng B, Chen J, Qi S, He L, Zhao J, Zhang X. Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials. 2002;23(1):173-9. https://doi.org/10.1016/S0142-9612(01)00093-X
  13. Ma Q, Li M, Hu Z, Chen Q, Hu W. Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Materials Letters. 2008;62(17-18):3035-8. https://doi.org/10.1016/j.matlet.2008.01.121
  14. Kokubo T, Miyaji F, Kim HM, Nakamura T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. Journal of the American Ceramic Society. 1996;79(4):1127-9. https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  15. Chung H, Won D, Bae T, Lee M. Effect of potassium hydroxide treatment of titanium implant on the precipitation of calcium phosphate and tissue compatibility. J Korean Res Soc Dent Mater. 2001;28:223-33.
  16. Groot Kd, Geesink R, Klein C, Serekian P. Plasma sprayed coatings of hydroxyapatite. J Biomed Mater Res. 1987;21(12):1375-81. https://doi.org/10.1002/jbm.820211203
  17. Jeon W-Y, Han A-L. Surface Modification of Ti-6Al-4V Alloy by Anodic Oxidation and Cyclic Precalcification Treatments. Korean Journal of Dental Materials. 2016;43(1):1. https://doi.org/10.14815/kjdm.2016.43.1.1
  18. Song J-J, HAN A-L, Jung S-J, Shi H-B, Byeon S-M, Lim C-H. Effect of Cyclic Pre-calcification on the Bioactivity of Ti-6Al-4V Alloy Modified by Nonotubular TiO2 Layer. J Korean Dent Mat. 2016;43:p223-30. https://doi.org/10.14815/kjdm.2016.43.3.223
  19. Kasemo B. Metal selection and surface characteristics. Tissue-integrated prostheses. 1985:99-116.
  20. Yang B, Uchida M, Kim H-M, Zhang X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25(6):1003-10. https://doi.org/10.1016/S0142-9612(03)00626-4
  21. Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731-9. https://doi.org/10.1016/j.biomaterials.2003.12.002
  22. Yao C, Webster TJ. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;91(2):587-95.
  23. Bae IH, Yun KD, Kim HS, Jeong BC, Lim HP, Park SW, et al. Anodic oxidized nanotubular titanium implants enhance bone morphogenetic protein-2 delivery. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2010;93(2):484-91.
  24. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports. 2013;74(12):377-406. https://doi.org/10.1016/j.mser.2013.10.001
  25. Feng X, Macak JM, Schmuki P. Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochemistry Communications. 2007;9(9):2403-7. https://doi.org/10.1016/j.elecom.2007.07.007
  26. Hanawa T, Ukai H, Murakami K, Asaoka K. Structure of surface-modified layers of calcium-ion-implanted Ti-6Al-4V and Ti-56Ni. Materials Transactions, JIM. 1995;36(3):438-44. https://doi.org/10.2320/matertrans1989.36.438
  27. Wen H, Wolke J, De Wijn J, Liu Q, Cui F, De Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials. 1997;18(22):1471-8. https://doi.org/10.1016/S0142-9612(97)82297-1
  28. Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, Schmuki P. Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta biomaterialia. 2009;5(6):2322-30. https://doi.org/10.1016/j.actbio.2009.02.032