• Title/Summary/Keyword: $TiO_2$ NPs

Search Result 39, Processing Time 0.024 seconds

Enhanced size uniformity and dispersibility of BaTiO3 nanoparticles by hydrothermal synthesis (균일성과 분산성이 향산된 BaTiO3 나노입자의 수열합성)

  • Cho, Hoyeon;Park, Byoungnam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.91-95
    • /
    • 2020
  • In this study, we report a hydrothermal synthesis in which BaTiO3 nanoparticles (NPs) with enhanced size uniformity and dispersibility are synthesized by increased time and temperature, increasing nucleation and diffusion rates. The formation process of an uniform size of 20 nm BaTiO3 NPs, which has not been extensively researched, was optimized through hydrothermal synthesis at 180℃. Simultaneous increase in the nucleation rate of TiO2 and diffusion length of Ba2+ ions, resulting from a higher temperature, allowed for the synthesis of BaTiO3 NPs (20 nm) with significantly enhanced size-uniformity. The size and crystallinity of BaTiO3 NPs which exhibit excellent dispersibility in hexane solvent were investigated using transmission electron microscopy and X-ray diffraction. The results presented herein provide insights into improving the size uniformity and dispersibility of BaTiO3 NPs by hydrothermal synthesis for applications to variety of electronic devices.

The Effects of WO3 Nanoparticles Addition to the TiO2 Photoelectrode in Dye-Sensitized Solar Cells

  • Vu, Hong Ha Thi;Hwang, Yoon-Hwae;Kim, Hyung-Kook
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • Increasing the efficiency of dye-sensitized solar cells (DSSCs) by the fabrication of new photoelectrodes (PEs) is an important challenge. This study examined the photovoltaic parameters of DSSCs composed of a $TiO_2$ PE with $WO_3$ nanoparticles (NPs). A number of PEs with the same thickness but different concentrations of $WO_3$ NPs in the $TiO_2PE$ were prepared. The morphology and structural properties of the prepared PEs were examined by field-emission scanning electron microscopy and X-ray diffraction, respectively. The effects of the $WO_3$ NPs mixing concentration on the efficiency of DSSCs were investigated under simulated solar light irradiation.

A Comparison Study on Various Quantum Dots Light Emitting Diodes Using TiO2 Nanoparticles as Inorganic Electron Transport Layer (무기 전자 수송층으로 TiO2 나노입자를 사용한 다양한 양자점 전계발광 소자의 특성 비교 연구)

  • Kim, Moonbon;Yoon, Changgi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.71-74
    • /
    • 2019
  • In this study, we fabricated two standard and inverted quantum dot light emitting diodes (QLEDs) using $TiO_2$ nanoparticles (NPs) with lower electron mobility than ZnO NPs as inorganic electron transport layer to suppress electron injection into the emitting layer. Current density was much higher for the inverted QLEDs than the standard ones. The inverted QLEDs were brighter, but showed low current efficiency due to the high current density. In addition, as the current density was higher, the driving voltage was higher, and the red shift was confirmed in the emission wavelength spectrum. The low current density in the standard structured devices showed that the possibility that $TiO_2$ NPs could suppress the electron injection in the QLEDs.

Solution-Processed Quantum Dot Light-Emitting Diodes with TiO2 Nanoparticles as an Electron Transport Layer and a PMMA Insulating Layer (TiO2를 전자수송층으로 적용하고 PMMA 절연층을 삽입한 용액공정 기반 양자점 전계 발광 소자의 활용)

  • Kim, Bomi;Kim, Jungho;Kim, Jiwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2022
  • We report highly efficient quantum dot light-emitting diodes (QLEDs) with TiO2 nanoparticles (NPs) as an alternative electron transport layer (ETL) and poly (methyl methacrylate) (PMMA) as an insulating layer. TiO2 NPs were applied as ETLs of inverted structured QLEDs and the effect of the addition of PMMA between ETL and emission layer (EML) on device characteristics was studied in detail. A thin PMMA layer supported to make the charge balance in the EML of QLEDs due to its insulating property, which limits electron injection effectively. Green QLEDs with a PMMA layer produced the maximum luminance of 112,488 cd/m2 and a current efficiency of 25.92 cd/A. We expect the extended application of TiO2 NPs as the electron transport layer in inverted structured QLEDs device in the near future.

Photocatalytic decomposition of polyethylene composite film with TiO2 nanotube powders prepared by rapid breakdown anodization (급속 파괴 양극산화로 제조된 TiO2 나노 튜브 분말을 활용한 폴리에틸렌 복합 필름의 UV 광촉매 분해)

  • Lim, Kyungmin;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.153-159
    • /
    • 2020
  • Photocatalytic decomposition of polyethylene film with TiO2 nanotube powders (NTs) was investigated under UV irradiation at ambient conditions. TiO2 NTs composed of individual nanotubes are prepared by rapid breakdown anodization technique. A comparative study on the photocatalytic decomposition of polyethylene-TiO2 composite films prepared using TiO2 nanoparticles (NPs) or TiO2 NTs (NTs), respectively, was conducted under UV irradiation. Polyethylene film incorporated with TiO2 NTs showed 26 wt% weight loss after 200 h under UV irradiation about two times faster decomposition rate than TiO2 NPs which is attributed to large surface area of TiO2 NTs.

Bioassessment of Nanoparticle Toxicity based on Seed Germination and Germination Index of Various Seeds (다양한 씨앗의 발아 및 발아지수에 근거한 나노입자 생물학적 독성평가)

  • Gu, Bon Woo;Lee, Min Kyeung;Shi, Yu Tao;Kong, In Chul
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This study investigated the effects of six metal oxide nanoparticles (NPs: CuO, NiO, TiO2, Fe2O3, Co3O4, ZnO) on seed germination and germination index (G.I) for five types of seeds: Brassica napus L., Malva verticillata L., Brassica olercea L., Brassica campestris L., Daucus carota L. NPs of CuO, ZnO, NiO show significant toxicity impacts on seed activities [CuO (6-27 mg/L), ZnO (16-86 mg/L), NiO (48-112 mg/L)], while no significant effects were observed at > 1000 mg/L of TiO2, Fe2O3, Co3O4. Tested five types of seed showed different sensitivities on seed germination and root activity, especially on NPs of CuO, ZnO, NiO. Malva verticillata L. seed was highly sensitive to toxic metal oxide NPs and showed following EC50s : CuO 5.5 mg/L, ZnO 16.4 mg/L, NiO 53.4 mg/L. Mostly following order of toxicity was observed, CuO > ZnO > NiO > Fe2O3 ≈ Co3O4 ≈ TiO2, where slightly different toxicity order was observed for carrot, showing CuO > NiO ≈ ZnO > Fe2O3 ≈ Co3O4 ≈ TiO2.

Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1753-1758
    • /
    • 2012
  • A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of $Au@TiO_2$ nanocomposite is developed. $TiO_2$ (P25) was pretreated by employing UV light (${\lambda}$ = 254 nm) and the pretreated $TiO_2$ was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the $TiO_2$ activated, as electrons were accumulated within the $TiO_2$ in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at $TiO_2$ surface. It leads to formation of stable and crystalline $Au@TiO_2$ nanocomposites. The rapidity (13 hours), monodispersity, smaller nanocomposites and easy separation make this protocol highly significant in the area of nanocomposites syntheses. As-synthesized nanocomposites were characterized by TEM, HRTEM, TEM-EDX, SAED, XRD, UV-visible spectrophotometer and zeta potential. Dye degradation experiments of methyl orange show that type I ($Au@TiO_2$ nanocomposites in which $TiO_2$ was pretreated with UV light) has enhanced photocatalytic activity in comparison to type II ($Au@TiO_2$ nanocomposites in which $TiO_2$ was not pretreated with UV light) and $TiO_2$ (P25). This shows that pretreatment of $TiO_2$ provides type I a better catalytic activity.

Alterations in Growth and Morphology of Ganoderma lucidum and Volvariella volvaceae in Response to Nanoparticle Supplementation

  • Singh, Swarnjeet;Kuca, Kamil;Kalia, Anu
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.383-391
    • /
    • 2020
  • Use of nanoparticles (NPs) in several commercial products has led to emergence of novel contaminants of air, soil and water bodies. The NPs may exhibit greater ecotoxicity due to nano-scale dependent properties over their bulk counterparts. The present investigation explores the effect of in vitro supplementation of TiO2, silica and silver NPs on radial growth and ultrastructural changes in the hyphae and spores of two mushroom genera, Ganoderma lucidum and Volvariella volvaceae. A concentration dependent decrease in radial growth on NP amended potato dextrose agar medium was recorded. However, in comparison to control, there was decrease in radial diameter on supplementation with TiO2 NPs while an increase was recorded for silica and silver NPs amendments as compared to their bulk salts at same concentrations after 48 h of incubation. Optical microscopy studies showed decrease in the number of spores while increase in spore diameter and thinning of hyphal diameter on NPs supplementation. Scanning electron microscopy analysis of fungal growth showed presence of deflated and oblong spores in two fruiting strains of Ganoderma while Volvariella exhibited decreased sporulation. Further, hyphal thinning and branching was recorded in response to NP amendments in both the test mushrooms. Enhancement of protein content was observed on NP compared to bulk supplementation for all cultures, concentrations and hours of incubation except for TiO2 NPs. Likewise, bulk and NP supplementations (at 100 mg L-1) resulted in enhanced laccase activity with occurrence of laccase specific protein bands on SDS-PAGE analysis.

An Image Cytometric MTT Assay as an Alternative Assessment Method of Nanoparticle Cytotoxicity

  • Lee, Song Hee;Park, Jonghoon;Kwon, Dongwook;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1933-1938
    • /
    • 2014
  • Despite increasing importance of in vitro cell-based assays for the assessment of nanoparticles (NPs) cytotoxicity, their suitability for the assessment of NPs toxicity is still in doubt. Here, limitations of widely used cell viability assay protocol (i.e., MTT asssay) for the cytotoxicity assessment of P25 $TiO_2$ NPs were carefully examined and an alternative toxicity assessment method to overcome these limitations was proposed, where the artifacts caused by extracellularly formed formazan and light scattered by agglomerated NPs were minimized by measuring only the intracellular formazan via image cytometric methods.

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.