References
- Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2019;12(7):908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
- Tratnyek PG, Johnson RL. Nanotechnologies for environmental cleanup. Nanotoday. 2006;1(2):44-48. https://doi.org/10.1016/S1748-0132(06)70048-2
- Inshakova E, Inshakov O. World market for nanomaterials: structure and trends. MATEC Web Conf ICMTMTE. 2017;129:02013. https://doi.org/10.1051/matecconf/201712902013
- Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050-1074. https://doi.org/10.3762/bjnano.9.98
- Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature. 2006;444(7117):267-269. https://doi.org/10.1038/444267a
- Huan C, Shu-Qing S. Silicon nanoparticles: preparation, properties, and applications. Physical Biol. 2015;46(39):no-14.
-
Hashimoto K, Irie H, Fujishima A.
$TiO_2$ photocatalysis: a historical overview and future prospects. AAPPS Bull. 2007;17(6):12-28. - Fujioka K, Hiruoka M, Sato K, et al. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnol. 2008;19(41):1-7.
- Wiesner MR, Lowry GV, Alvarez P, et al. Assessing the risks of manufactured nanomaterials. Environ Sci Technol. 2006;40(14):4336-4345. https://doi.org/10.1021/es062726m
- Baldrian P. Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol. 2008;1(1):4-12. https://doi.org/10.1016/j.funeco.2008.02.001
- Gianfreda L, Xu F, Bollag JM. Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 1999;3(1):1-26. https://doi.org/10.1080/10889869991219163
- Baldrian P. Effect of heavy metals on saprotrophic soil fungi. In: Sherameti I, Varma A, editors. Soil heavy metals. Berlin (Heidelberg): Springer-Verlag 2010. p. 263-279.
- Amdekar S. Ganoderma lucidum (Reishi): source of pharmacologically active compounds. Curr Sci. 2016;111(6):976-978.
- Bozzola JJ, Russell LD. Electron microscopy: principles and techniques for biologists. Boston; Jones & Bartlett; 1999.
- Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
- Laemmli UK, Molbert E, Showe M, et al. Formdetermining function of the genes required for the assembly of the head of bacteriophage T4. J Mol Biol. 1970;49(1):99-113. https://doi.org/10.1016/0022-2836(70)90379-7
- Turner EM. Phenoloxidase activity in relation to substrate and developmental stage in mushroom Agaricus biosporus. Trans Br Mycol Sociol. 1974;63(3):541-547. https://doi.org/10.1016/S0007-1536(74)80103-8
- Singh RP, Garcha HS, Khanna PK. Laccase production by Pleurotus spp. Indian J Microbiol. 1988;28:38-41.
- Dhaliwal MS, Jindal SK, Dhaliwal LK, et al. Growth and yield of tomato influenced by condition of culture, mulch and planting date. Intl J Veg Sci. 2017;23(1):4-17. https://doi.org/10.1080/19315260.2016.1149133
- Goyal A, Kalia A, Sodhi HS. Selenium stress in Ganoderma lucidum: a scanning electron microscopy appraisal. Afr J Microbiol Res. 2015;9(12):855-862. https://doi.org/10.5897/AJMR2014.7250
- Baldrian P. Fungal laccases - occurrence and properties. FEMS Microbiol Rev. 2006;30(2):215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
- Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol. 2003;32(1):78-91. https://doi.org/10.1016/S0141-0229(02)00245-4
- Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol. 2001;56(1-2):225-232. https://doi.org/10.1007/s002530100636
- Tychanowicz GK, de Souza DF, Souza CGM, et al. Copper improves the production of laccase by the white-rot fungus Pleurotus pulmonarius in solid state fermentation. Braz Arch Biol Technol. 2006;49(5):699-704. https://doi.org/10.1590/S1516-89132006000600002
- Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett. 2002;206(1):69-74. https://doi.org/10.1111/j.1574-6968.2002.tb10988.x
- Guo S, Li H, Yang J, et al. Visible-light-induced effects of Au nanoparticle on laccase catalytic activity. ACS Appl Mater Interfaces. 2015;7(37):20937-20944. https://doi.org/10.1021/acsami.5b06472
Cited by
- Myco-decontamination of azo dyes: nano-augmentation technologies vol.10, pp.9, 2020, https://doi.org/10.1007/s13205-020-02378-z
- Differential Antimycotic and Antioxidant Potentials of Chemically Synthesized Zinc-Based Nanoparticles Derived from Different Reducing/Complexing Agents against Pathogenic Fungi of Maize Crop vol.7, pp.3, 2020, https://doi.org/10.3390/jof7030223