Browse > Article
http://dx.doi.org/10.5695/JKISE.2020.53.4.153

Photocatalytic decomposition of polyethylene composite film with TiO2 nanotube powders prepared by rapid breakdown anodization  

Lim, Kyungmin (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of Surface Science and Engineering / v.53, no.4, 2020 , pp. 153-159 More about this Journal
Abstract
Photocatalytic decomposition of polyethylene film with TiO2 nanotube powders (NTs) was investigated under UV irradiation at ambient conditions. TiO2 NTs composed of individual nanotubes are prepared by rapid breakdown anodization technique. A comparative study on the photocatalytic decomposition of polyethylene-TiO2 composite films prepared using TiO2 nanoparticles (NPs) or TiO2 NTs (NTs), respectively, was conducted under UV irradiation. Polyethylene film incorporated with TiO2 NTs showed 26 wt% weight loss after 200 h under UV irradiation about two times faster decomposition rate than TiO2 NPs which is attributed to large surface area of TiO2 NTs.
Keywords
Photocatalytic degradation; $TiO_2$ nanotube powders; Rapid breakdown anodization; Polyethylene film;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Y. Ogata, H. Takada, K. Mizukawa, H. Hirai, S. Iwasa, S. Endo, Y. Mato, M. Saha, K. Okuda, A. Nakashima, International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs, Marine pollution bulletin, 58 (2009) 1437-1446.   DOI
2 M. Gold, K. Mika, C. Horowitz, M. Herzog, Stemming the tide of plastic litter: a global action agenda, Tul. Envtl. LJ, 27 (2013) 165.
3 Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, T. Kaminuma, Plastic resin pellets as a transport medium for toxic chemicals in the marine environment, Environmental science & technology, 35 (2001) 318-324.   DOI
4 R. Singh, B. Ruj, A. Sadhukhan, P. Gupta, Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism, Journal of environmental management, 239 (2019) 395-406.   DOI
5 D. Park, E. Hwang, J. Kim, J. Choi, Y. Kim, H. Woo, Catalytic degradation of polyethylene over solid acid catalysts, Polymer degradation and stability, 65 (1999) 193-198.   DOI
6 J. Yang, Y. Yang, W.-M. Wu, J. Zhao, L. Jiang, Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms, Environmental science & technology, 48 (2014) 13776-13784.   DOI
7 A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 238 (1972) 37-38.   DOI
8 H.-S.C. Han-Jun Oh, Jong-Ho Lee, Choong-Soo Chi, Effective Wastewater Purification Using $TiO_2$ Nanotubular Catalyst, Korean journal of metals and materials, 47 (2009) 91-98.
9 R.T. Thomas, V. Nair, N. Sandhyarani, $TiO_2$ nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422 (2013) 1-9.   DOI
10 Y.G.P. Hong Joo Lee, Seung Hwan Lee and Jung Hoon Park, Photocatalytic Properties of TiO2 According to Manufacturing Method, Korean Chemical Engineering Research, 56 (2018) 156-161.   DOI
11 D.K. Dasol Jeong, and Hyunsung Junga, Photoelectrochemical Properties of $TiO_2$ Nanotubes by Well-Controlled Anodization Process, Journal of the Korean Institute of surface engineering, 52 (2019) 298-305.   DOI
12 R. Hahn, J. Macak, P. Schmuki, Rapid anodic growth of $TiO_2\;and\;WO_3$ nanotubes in fluoride free electrolytes, Electrochemistry communications, 9 (2007) 947-952.   DOI
13 G.H. Chul young Choi, Ilguk Jo, Young seok Kimb, Yangdo Kim, Photolytic Characteristics of Ni-$TiO_2$ Composite Coating from Electroless Plating, Journal of the Korean Institute of surface engineering, 42 (2009) 157-160.   DOI
14 S.S. Ali, I.A. Qazi, M. Arshad, Z. Khan, T.C. Voice, C.T. Mehmood, Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes, Environmental nanotechnology, monitoring & management, 5 (2016) 44-53.   DOI
15 K. Lee, Principle of Anodic $TiO_2$ Nanotube Formations, Applied Chemistry for Engineering, 28 (2017) 601-606.   DOI
16 E. Song, Y.-T. Kim, J. Choi, Anion additives in rapid breakdown anodization for nonmetal-doped $TiO_2$ nanotube powders, Electrochemistry Communications, 109 (2019) 106610.   DOI
17 P. Gijsman, G. Meijers, G. Vitarelli, Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate, Polymer Degradation and Stability, 65 (1999) 433-441.   DOI
18 F. Fallani, G. Ruggeri, S. Bronco, M. Bertoldo, Modification of surface and mechanical properties of polyethylene by photo-initiated reactions, Polymer degradation and stability, 82 (2003) 257-261.   DOI
19 C.C. Ji Hyun Ryu, Current Status of Microplastics and Impact on Human Health, Prospectives of Industrial Chemistry, 22 (2019) 1-12.
20 X. u Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation, Journal of Molecular Catalysis A: Chemical, 268 (2007) 101-106.   DOI
21 R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Science advances, 3 (2017) e1700782.   DOI
22 J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean, Science, 347 (2015) 768-771.   DOI
23 A.L. Andrady, Microplastics in the marine environment, Marine pollution bulletin, 62 (2011) 1596-1605.   DOI
24 S.-G. Kim, 입자상 잔류성 유기오염 물질에 의한 원형 미세플라스틱 오염 연구, Proceeding of EDISON Challenge, (2016) 576-581.