• Title/Summary/Keyword: $TiB_2$

Search Result 1,117, Processing Time 0.029 seconds

Preparation of $LaAlO_3$ thin Films by Sol-gel Method (Sol-gel 방법에 의한 $LaAlO_3$ 박막의 제조)

  • Kim, H.J.;Kim, B.J.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • Lanthanum aluminate($LaAlO_3$) film has been prepared on single crystal and metal substrates by dip coating method. Lanthanum acetate and aluminum were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate in acetate glacial acetic acid solution after being refluxed. Coating solution was obtained by diluting the gel with methanol and 2-methoxyethanol to adjust the total cation concentration to 0.67 M. Precursor coated film was prepared by dip-coating with a speed of 25 mm/min on various substrates such as $LaAlO_3$ (001), MgO(001), $SrTiO_3$(001) single crystal, LMO/MgO/Ni-alloy. Thin films have been obtained by heat treating the precursor film at various temperatures from $600^{\circ}C{\sim}900^{\circ}C$ and various heating rate from $0.83^{\circ}C/min{\sim}1.25^{\circ}C/min$ under $Ar/O_2$ mixture containing 1000ppm oxygen. The films have been characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). XRD analysis for the prepared film showed that $LaAlO_3$ thin films with a preferred orientation of (100) plane parallel to substrate surface were obtained at $800^{\circ}C(1.11\;^{\circ}C/min)$ on LMO/MgO/Ni-alloy substrate, but the intensity decreased with the increase of heat treatment temperature.

  • PDF

Hydraulic Behaviors of KSTAR PF Coils in Operation

  • Park, S.H.;Chu, Y.;Kim, Y.O.;Yonekawa, H.;Chang, Y.B.;Woo, I.S.;Lee, H.J.;Park, K.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.24-27
    • /
    • 2012
  • The superconducting coil system is one of the most important components in Korea Superconducting Tokamak Advanced Research (KSTAR), which has been operated since 2008. $Nb_3Sn$ and NbTi superconductors are being used for cable-in-conduit conductors (CICCs) of the KSTAR toroidal field (TF) and poloidal field (PF) coils. The CICCs are cooled by forced-flow supercritical helium about 4.5 K. The temperature, pressure and mass flow rate of the supercritical helium in the CICCs are interacting with each other during the operation of the coils. The complicate behaviors of the supercritical helium have an effect on the operation and the efficiency of the helium refrigeration system (HRS) by means of, for instance, pressure drop. The hydraulic characteristics of the supercritical helium have been monitored while the TF coils have stably achieved the full current of 35 kA. In other hands, the PF coils have been operated with various pulsed or bipolar mode, so the drastic changes happen in view of hydraulics. The heat load including AC loss on the coils has been analyzed according to the measurement. These activities are important to estimate the temperature margin in various PF operation conditions. In this paper, the latest hydraulic behaviors of PF coils during KSTAR operation are presented.

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2000
  • Recently developed Austenite stainless steel, 309L was used to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also, the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied. 1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained. 2) The form of martensite at the transition region was occurred by reversible transformation during cooling since the interdiffusion of Cr and Ni from weld metal and Fe and C from base metals at the transition region, causes to lowering the concentration of Cr and Ni at the transition region, leading to increasing Ms point. 3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling. 4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the gain boundary.

  • PDF

Development of Spontaneous Polarization of Epitaxial Iron-Excess Gallium Ferrite Thin Films

  • Oh, S.H.;Shin, R.H.;Lee, J.H.;Jo, W.;Lefevre, C.;Roulland, F.;Thomasson, A.;Meny, C.;Viart, N.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.05a
    • /
    • pp.121-122
    • /
    • 2012
  • Iron-excess gallium ferrite, $Ga_{0.6}Fe_{1.4}O_3$ (GFO), is known to have room-temperature ferromagnetic phases and potentially exhibit ferroelectricity as well [1]. But, leaky polarization-electric field (PE) hysteresis curves of the GFO thin film are hurdle to prove its spontaneous polarization, in other words, ferroelecticity. One of the reasons that the GFO films have leaky PE hysteresis loop is carrier hopping between $Fe^{2+}$ and $Fe^{3+}$ sites due to oxygen deficiency. We focus on reducing conducting current by substituting divalent cations at $Fe^{2+}$ sites. GFO thin films were grown epitaxially along b-axis normal to $SrRuO_3/SrTiO_3$ (111) substrates by pulsed laser deposition. Current density of the ion-substituted GFO thin films was reduced by $10^3$ or more. Ferroelectric properties of the ion-substituted GFO thin films were measured using macroscopic and microscopic schemes. In particular, local ferroelectric properties of the GFO thin films were exhibited and their remnant polarization and piezoelectric d33 coefficient were obtained.

  • PDF

Properties of Ferroelectric Materials Applicable to Nano-storage Media (탐침형 정보 저장장치에 응용 가능한 강유전체 물질의 특성 연구)

  • Choi J.S.;Kim J.S.;Hwang I.R.;Byun I.S.;Kim S.H.;Jeon S.H.;Lee J.H.;Hong S.H.;Park B.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2006
  • We have investigated structural and electrical properties of $PbZr_{0.3}Ti_{0.7}O_{3}$ (PZT) thin films deposited by pulsed laser deposition methods. PZT thin films have been deposited on $LaMnO_3$ (LMO) bottom electrodes with $LaAlO_3$ (LAO) substrates during different deposition times. High-resolution x-ray diffraction data have shown that all the PZT films and bottom electrodes are highly oriented. The thickness of each film is determined by field-emission scanning electron microscope. We have also observed root mean square roughness by using atomic force microscopy mode, and local polarization distribution and retention behavior of a ferroelectric domain by using piezoelectric force microscopy mode. A PZT/LMO structure has shown good ferroelectric and retention properties as the media for nano-storage devices.

First-order Wire-wound SQUID Gradiometer System Having Compact Superconductive Connection Structure between SQUID and Pickup Coil (SQUID와 검출코일의 초전도 결합방식이 개선된 1차 권선형 미분계 시스템)

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Kwon, H.;Kim, K.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • In order to have a superconductive connection between the wire-wound pickup coil and input coil, typically Nb terminal blocks with screw holes are used. Since this connection structure occupies large volume, large stray pickup area can be generated which can pickup external noise fields. Thus, SQUID and connection block are shielded inside a superconducting tube, and this SQUID module is located at some distance from the distal coil of the gradiometer to minimize the distortion or imbalance of uniform background field due to the superconducting module. To operate this conventional SQUID module, we need a higher liquid He level, resulting in shorter refill interval. To make the fabrication of gradiometers simpler and refill interval longer, we developed a novel method of connecting the pickup coil into the input coil. Gradiometer coil wound of 0.125-mm diameter NbTi wires were glued close to the input coil pads of SQUID. The superconductive connection was made using an ultrasonic bonding of annealed 0.025-mm diameter Nb wires, bonded directly on the surface of NbTi wires where insulation layer was stripped out. The reliability of the superconductive bonding was good enough to sustain several thermal cycling. The stray pickup area due to this connection structure is about $0.1\;mm^2$, much smaller than the typical stray pickup area using the conventional screw block method. By using this compact connection structure, the position of the SQUID sensor is only about 20-30 mm from the distal coil of the gradiometer. Based on this compact module, we fabricated a magnetocardiography system having 61 first-order axial gradiometers, and measured MCG signals. The gradiometers have a coil diameter of 20 mm, and the baseline is 70 mm. The 61 axial gradiometer bobbins were distributed in a hexagonal lattice structure with a sensor interval of 26 mm, measuring $dB_z/dz$ component of magnetocardiography signals.

  • PDF

Increment of fructan biosynthesis in rice by transformation of 1-sst and 1-fft genes isolated from jerusalem artichoke (Helianthus tuberosus L.) (돼지감자 유래 1-sst와 1-fft 유전자의 형질전환 발현에 의한 벼의 fructan 생합성 증진)

  • Kang, Kwon-Kyoo;Song, Beom-Heon;Lee, Gyong-A;Lee, Hye-Jung;Park, Jin-Ha;Jung, Yu-Jin;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2010
  • Fructan has been found to accumulate in various tissues during periods when light levels increased carbon fixation where low temperatures reduced growth rates while photosynthesis continued. In this study, we have cloned 1-sucrose:sucrose fructosyl transferase(1-sst) and 1-fructan: fructan fructosyl transferase (1-fft, a key enzyme for the synthesis of fuctan) from Jerusalem Artichoke (Helianthus tuberosus L.). The recombinant vector with 1-sst and 1-fft has been constructed under the control of 35S promoter of KJGV-B2 vector and transgenic plants obtained by Agrobacterium tumefaciens LBA4404. PCR analysis carried out on the putative transgenic plants for amplification of the coding region of specific gene (1-sst, 1-fft), and HPT genes. Transgenic lines carrying of 1-sst and 1-fft were confirmed for integration into the rice genome using Southern blot hybridization and RT-PCR. The transgenic plants in $T_2$ generation were selected and expression pattern analysis revealed that 1-sst and 1-fft were stable. This analysis confirmed the presence of low-molecular-weight fructan in the seedling of the transgenic rices. Therefore, cold tolerance and carbohydrate metabolism will be possible to develop resistant plants using the transgenic rice.

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.