• Title/Summary/Keyword: $T_D$-space

Search Result 516, Processing Time 0.025 seconds

Analysis of Dark Data of the PICNIC IR Arrays in the CIBER

  • Lee, D.H.;Kim, M.G.;Tsumura, K.;Zemcov, M.;Nam, U.W.;Bock, J.;Battle, J.;Hristov, V.;Renbarger, T.;Matsumoto, T.;Sullivan, I.;Levenson, L.R.;Mason, P.;Matsuura, S.;Kim, G.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.401-406
    • /
    • 2010
  • We have measured and analyzed the dark data of two PICNIC IR arrays (P574 and P560) obtained through the Cosmic Infrared Background ExpeRiment (CIBER). First, we identified three types of bad pixels: the cold, the hot, and the transient, which are figured in total as 0.06% for P574 and 0.19% for P560. Then, after the bad pixels were masked, we determined the dark noise to be 20.5 ${\pm}$ 0.05 $e^-$ and 16.1 ${\pm}$ 0.05 $e^-$, and the dark current to be 0.6 ${\pm}$ 0.05 $e^-$/sec and 0.7 ${\pm}$ 0.05 $e^-$/sec for P574 and P560, respectively. Finally, we discussed glitches and readout modes for a future mission.

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.

IGRINS : Collimating Mirror Mount Opto-mechanical Design

  • Rukdee, Surangkhana;Park, Chan;Chun, Moo-Young;Yuk, In-Soo;Lee, Sung-Ho;Lee, Han-Shin;Kim, Kang-Min;Jeong, Hwa-Kyung;Strubhar, Joseph;Jaffe, Daniel T.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.4-31
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

Direct Clothing Pattern Development from the 3D Illustration on the Personal Human Body Model (인체모델과 3차원 일러스트레이션을 이용한 의복패턴개발)

  • Park, Hye-Jun;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.2
    • /
    • pp.340-347
    • /
    • 2008
  • A prototype of 3D clothing design system with a direct pattern development function was suggested, reflecting intuitive design functions and design modifications while considering the fit of clothing patterns with the 3D human body in the virtual 3D space. The research method was as follows. Clothing models were created using a 3D design tool, 3ds max on the surface of 3D human body model made by scanning an actual human body. 3D illustrations were completed by revising the fit and sizing of the human body and clothing models. 2D T-shirt pattern was produced 3D illustrations using from a 3D scanning data modeling solution RapidForm 2004, a 2D conversion program for 3D data called 2C-AN, and Yuka CAD. As a result, the following conclusions were made. The fit of the clothing and human body can be adjusted by reflecting individual body figure characteristics and 3D illustrations over the actual 3D body model. Furthermore, intuitive design support functions were intensified overcoming the weak point of existing 3D clothing design system by developing the direct clothing design in the virtual 3D space. 3D illustration design modifications can be directly reflected on clothing patterns from 3D illustrations by 3D clothing design system developed in this study.

Photorefractive Performance of Poly[methyl-3-(9-carbazolyl) propylsiloxane] Based Composites Sensitized with Poly(3-hexylthiophene) in a 0.2-1wt % Range

  • Oh, Jin-Woo;Kim, Nak-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • In this work, we report on the characterization of six low-$T_g$ poly[methyl-3-(9-carbazolyl) propylsiloxane] based photorefractive (PR) composites sensitized with poly(3-hexylthiophene) (P3HT) in different concentrations, ranging from 0.2 to 1 wt %. At 632.8 nm, photoconductivity, space charge field, refractive index modulation, and grating buildup time were measured versus external electric field. The photoconductivity was strongly dependent on the visible light absorption and mobility. The magnitude of space charge field was affected by the conductivity contrast $\sigma_{ph}/(\sigma_{ph}+\sigma_d)$. The refractive index modulation increased with the magnitude of space charge field and the PR grating buildup speed increased with the photoconductivity.

Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming (유무인기 협업 기반의 SEAD 임무 수행절차 분석)

  • Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.678-685
    • /
    • 2019
  • Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.

A Study on the Virtual Experience Evaluation(VEE) of Space Design through the Web3D - Focus on the Evaluation Criteria - (Web을 통한 공간설계의 가상체험평가(VEE)에 관한 연구 - 평가기준을 중심으로 -)

  • Lee Sang-Ho;Kim Tae-Hwan
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.4 s.51
    • /
    • pp.122-133
    • /
    • 2005
  • This study could begin with the improvement of computer graphic technology The graphic technology is the standards of computer technology level and up-to-date technology intensive. Above all, the technology of virtual reality has developed rapidly and the development of the program has changed from professional one only for the experts to easy of access ones for the space designers. Moreover, the program which major internet user's can experience the virtual model has been made, as the development of virtual reality technology that is based on the web. These graphic technology and the development of the web helped to extract human experiences on the space design step. However, to find the meeting point with real recognition is not easy though the virtual reality technology develops. Because the real space is made up of various senses that people feel in their surroundings. But, this study was possible because most of the space recognition is based on the visual organ, even though it can't satisfy all sensible factors that we feel in reality. Therefore, the significant of this study is the standards and criteria of evaluation, the technological proposal, expecting to make more advanced alternative design than before.

New Two-Weight Imbedding Inequalities for $\mathcal{A}$-Harmonic Tensors

  • Gao, Hongya;Chen, Yanmin;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.105-118
    • /
    • 2007
  • In this paper, we first define a new kind of two-weight-$A_r^{{\lambda}_3}({\lambda}_1,{\lambda}_2,{\Omega})$-weight, and then prove the imbedding inequalities for $\mathcal{A}$-harmonic tensors. These results can be used to study the weighted norms of the homotopy operator T from the Banach space $L^p(D,{\bigwedge}^l)$ to the Sobolev space $W^{1,p}(D,{\bigwedge}^{l-1})$, $l=1,2,{\cdots},n$, and to establish the basic weighted $L^p$-estimates for $\mathcal{A}$-harmonic tensors.

  • PDF

Spatial Analysis by Matching Methods using Elevation data of Aerophoto and LIDAR (항공사진과 LIDAR 표고 데이터의 매칭 기법에 의한 공간정보 분석 연구)

  • Yeon, sang-ho;Lee, Young-wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.449-452
    • /
    • 2008
  • The building heights of big cities which charged with most space are 3-D information as relative vertical distance from ground control points, but they didn't know the heights using contour with maps as lose of skyline or building heights for downtown, practically continuously developed of many technology methods for implementation of 3-D spatial earth. So, For the view as stereos of variety earth form generated 3-D spatial and made terrain perspective map, 3-D simulated of regional and urban space as aviation images. In this papers, it composited geospatial informations and images by DEM generation, and developed and presented for techniques overlay of CAD data and photos captured at our surroundings uses. Particularly, The airborne LiDAR surveying which are very interesting trend have laser scanning sensor and determine the ground heights through detecting angle and range to the grounds, and then designated 3-D spatial composite and simulation from urban areas. Therefore in this papers are suggested ease selections on the users situation by compare as various simulations that its generation of 3-D spatial image by collective for downtown space and urban sub, and the implementation methods for more accurate, more select for the best images.

  • PDF

Stereoscopic 3D Modelling Approach with KOMPSAT-2 Satellite Data

  • Tserennadmid, T.;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2009
  • This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.