• 제목/요약/키워드: $TSP/PM_{10}/PM_{2.5}/PM_{1.0}/PM_{0.5}/PM_{0.1}$

검색결과 36건 처리시간 0.027초

다단 임팩터 Nanosampler를 이용한 진주시 대기에어로졸입자의 입경별 질량농도 특성 (Mass Size Distribution of Atmospheric Aerosol Particles with Nanosampler Cascade Impactor in Jinju City)

  • 박정호;장민재;김형갑
    • 한국환경과학회지
    • /
    • 제24권5호
    • /
    • pp.679-687
    • /
    • 2015
  • Atmospheric aerosol particles were investigated at GNTECH university in Jinju city. Samples were collected using the Nanosampler period from January to December 2014. The Nanosampler is a 6 stage cascade impactor(1 stage : > $10{\mu}m$, 2 stage : $2.5{\sim}10{\mu}m$, 3 stage : $1.0{\sim}2.5{\mu}m$, 4 stage : $0.5{\sim}10{\mu}m$, 5 stage : $0.1{\sim}0.5{\mu}m$, back-up : < $0.1{\mu}m$) with the stages having 50% cut-off ranging from 0.1 to $10{\mu}m$ in aerodynamic diameter. The mass size distribution of Atmospheric aerosol particles was unimodal with peak at $1.0{\sim}2.5{\mu}m$ or $0.5{\sim}1.0{\mu}m$. The annual average concentrations of TSP, $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ were $44.0{\mu}g/m^3$, $40.3{\mu}g/m^3$, $31.4{\mu}g/m^3$, $18.0{\mu}g/m^3$, $8.0{\mu}g/m^3$, $3.0{\mu}g/m^3$, respectively. On average $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ make up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of $PM_{2.5}/PM_{10}$ ratio was 0.77.

대구시 공중이용시설 지하주차장의 총부유먼지, 호흡성먼지 및 중금속 농도 (The Concentrations of TSp, PM10 and Heavy Metal at Underground parking Lots of Public Facilities in Taegu City)

  • 이현주;정재열;이종영;송희봉;홍성철
    • 한국환경보건학회지
    • /
    • 제26권2호
    • /
    • pp.22-29
    • /
    • 2000
  • This study was performed to investigate the concentrations of TSP, PM10 and heavy metals(Pb, Cd,Hg, Ni, Zn) of underground parking lots in Taegu city. The samples were collected from 3 department stores and 1 central park in the winter and the summer, 1997. The samples of 3 department stores were divided into sale period and non-sale period in the winter and the summer. The concentrations of TSP and PM10 were 109.6±1.5㎍/㎥ and 93.3±1.5㎍/㎥. In TSP, the zinc was the highest level, 287.16±1.5ng/㎥ and the cadmium was the lowest, 2.4±2.1ng/㎥ and in PM10, the zinc was the highest level, 193.6±1.5ng/㎥ and the cadmium was the lowest, 0.6±3.9ng/㎥. The correlation coefficient between the concentration of TSP and PM10 was 0.982(p<0.05). The correlation coefficients of corresponding heavy metal in TSP and PM10 were 0.863 for lead, 0.617 for mercury, 0.890 for nickel and 0.850 for zinc(p<0.05). The concentrations of TSP, PM10 and cadmium of PM10 in the winter were higher than those of the summer. However, the concentration of Hg of PM10 in the summer was higher than that of the winter. The concentrations of TSP and PM10 in sale period was higher than those of non-sale period and the concentrations of heavy metal in TSP and PM10 were not significantly different between sale and non-sale period. The proportions of PM10 to TSP were above 60% in dust, lead, nickel, and zinc and less than 40% in cadmium and mercury. The concentrations of TSP, PM10 and heavy metal in the underground parking lots were comparatively lower than those of general atmosphere. However, this kind of research to PM10 in the underground parking lots must be continued because it is very important particulate matter that affects human beng's health.

  • PDF

지리산 국립공원 해발 865 m 지점에서 대기에어로졸입자의 입경별 질량농도 특성 (Mass Size Distribution of Atmospheric Aerosol Particles Collected at 865 m High of Jirisan National Park)

  • 류혜지;박정호
    • 한국환경과학회지
    • /
    • 제26권1호
    • /
    • pp.29-36
    • /
    • 2017
  • Aerosol mass size distributions were investigated at 865 m high the of Jirisan national park. A nanosampler cascade impactor was used to collect aerosols. The atmospheric aerosol particles had a unimodal mass size distribution, which peaked at $0.5-1.0{\mu}m$, and a mass aerodynamic diameter of $1.13{\mu}m$. The annual average concentrations of TSP, $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ were $20.9{\mu}g/m^3$, $19.3{\mu}g/m^3$, $14.9{\mu}g/m^3$, $10.7{\mu}g/m^3$, $5.3{\mu}g/m^3$, $1.2{\mu}g/m^3$, respectively. TSP concentrations were below $30{\mu}g/m^3$ during the sampling period. On average $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ made up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of PM2.5/PM10 ratio was 0.77.

Size Distributions of Atmospheric Particles in Cheonan, Korea

  • Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E1호
    • /
    • pp.45-48
    • /
    • 2006
  • Mass size distributions of atmospheric particles in Cheonan were determined using a high volume air sampler equipped with a 5-stage cascade impactor. Bimodal distributions that are typical for urban atmospheric particles were obtained. A MMD of the fine particle mode was $0.47{\pm}0.05{\mu}m$ with a GSD of $2.72{\pm}0.21$, and those of the coarse particles were $5.15{\pm}0.18{\mu}m\;and\;2.09{\pm}0.09$, respectively. The annual average concentrations of TSP, PM10, PM2.5, and PM1 were 74.1, 67.5, 54.2, and $42.3{\mu}g/m^3$, respectively. Although the daily PM10 concentrations were under the current National Standard, the daily PM2.5 concentrations frequently exceeded the US Standard even in non asian dust periods. The fractions of PM 10, PM2.5, and PM1 in TSP were $0.905{\pm}0.013,\;0.723{\pm}0.022,\;and\;0.572{\pm}0.029$, respectively, and fine mode particles occupied $57{\sim}72%$ of the total particle mass. The results indicate that fine particles were at the concerning level, and should be the target pollutant for the regional air quality strategy in Cheonan.

터널환기 무창육계사의 분진크기별 분포와 배출농도에 관한 연구 (Dust Spatial Distribution and Emission of Tunnel Ventilated Windowless Broiler Building)

  • 최희철;연규영;송준익;강희설;권두중;유용희;양창범;천상석;김용국
    • 한국축산시설환경학회지
    • /
    • 제12권3호
    • /
    • pp.115-122
    • /
    • 2006
  • 본 연구는 터널환기 무창육계사의 계사내부의 위치별 먼지 농도 분포와 배기홴에서 배출된 먼지의 확산범위를 알아보고자 수행하였으며 결과는 다음과 같다. 1. 입기구 방향의 계사 1/4 지점의 먼지농도는 TSP의 경우 $301.0{\sim}1,366.0\;{\mu}g/m^3$으로 입기구의 위치에 따라 차이가 있었다. 2. 터널홴 앞 3m 지점에서는 TSP $2065.8{\sim}3,092.2\;{\mu}g/m^3$, PM 2.5 $27.6{\sim}36.3\;{\mu}g/m^3$, PM 1.0 $8.3{\sim}11.3\;{\mu}g/m^3$으로 입기구에 비하여 증가하였다. 3. 배기홴으로부터 3m의 지점의 먼지 배출량은 TSP $354.8{\sim}574.8\;{\mu}g/m^3$으로 매우 높았으며 PM10 $94.4{\sim}156.2\;{\mu}g/m^3$, PM2.5 $14.6{\sim}18.0\;{\mu}g/m^3$, PM1.0 $6.0{\sim}6.4\;{\mu}g/m^3$ 이었다. 4. 배기홴으로부터 50m 떨어진 지점에서의 분진농도는 TSP $25.1\;{\mu}g/m^3$, PM10 $8.8\;{\mu}g/m^3$, PM2.5 $5.6\;{\mu}g/m^3$, PM1.0 $4.9\;{\mu}g/m^3$으로 매우 낮은 분진농도를 보였다. 5. 입기구와 배기구 간 분진농도의 차이는 TSP의 경우 입기구에서 $317.9\;{\mu}g/m^3$인데 비하여 배기구는 $2,678.5\;{\mu}g/m^3$로 8.42배 높았으며 PM10 7.4배, PM2.5 3.4배, PM1.0 1.6배 높았다. 6. 배기홴으로부터 거리별 분진의 배출농도는 3m 지점에서 $446.6\;{\mu}g/m^3$ 이었으나 20 m 지점에서는 $156.3\;{\mu}g/m^3$로 34.9% 수준이었고 PM10 34.9%, PM2.5 48.7%, PM1.0 86.8% 수준이었다.

  • PDF

노천소각에서 배출되는 먼지 배출계수 산정에 관한 연구 (Estimation of Particulate Matter Emission Factors from Open Burning)

  • 정노을;조명란;허선화;김형천;박정민;이대균;홍지형;이석조;이영재
    • 한국대기환경학회지
    • /
    • 제28권3호
    • /
    • pp.348-356
    • /
    • 2012
  • It is very important to investigate air pollutants and emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S. EPA and investigated concentrations of TSP, PM10, PM2.5 from woods and household wastes burning to calculate emission factors and build emission inventories. The results of experiment with 15 kg of woods and 3 kg of household wastes using the incineration simulator were as follows: in case of woods burning, TSP concentration was $66.4mg/m^3$, PM10 concentration was $28.4mg/m^3$, PM2.5 concentration was $17.9mg/m^3$, respectively; in case of household wastes burning, TSP concentration was $118.4mg/m^3$, PM10 concentration was $66.8mg/m^3$, PM2.5 concentration was $55.2mg/m^3$, respectively. Concentrations from household burning, as stated above, were higher than those from woods burning. Emission factors (EFs) for woods and household wastes burning were calculated as 2.45 and 6.75 g/kg for TSP, 0.86 and 5.45 g/kg for PM10, 0.78 and 4.81 g/kg for PM2.5, respectively. EFs of TSP, PM10, PM2.5 calculated from household wastes burning were higher than those of woods burning. When we added PM emissions from woods burning and household wastes burning to Korean National Emission Inventory named as Clean Air Policy Support System (CAPSS), CAPSS annual emissions of TSP, PM10, PM2.5 were increased by 0.08~0.26% (An increase rate for TSP, PM10, PM2.5 were 0.08~0.10%, 0.16~0.20% and 0.18~0.26%, respectively). Note that we assumed that the 1% of household wastes is emitted by open burning.

대구 안심연료단지 환경오염물질 노출 평가(II) - TSP, PM10, PM2.5 및 중금속 농도분포 및 노출특성 - (Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(II) - Concentration distribution and exposure characteristics of TSP, PM10, PM2.5, and heavy metals -)

  • 정종현;피영규;이준정;오인보;손병현;이형돈;윤미라;김근배;유승도;민영선;이관;임현술
    • 한국산업보건학회지
    • /
    • 제25권3호
    • /
    • pp.380-391
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter pollution and its effect on health of residents living near Ansim Briquette Fuel Complex and its vicinities. Also, this study measured and analyzed the concentration of TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals which influences on the environmental and respiratory disease in Ansim Briquette Fuel Complex, Daegu, Korea. Methods: In this study, we analyzed various environmental pollutants such as particulate matter and heavy metals from Ansim Briquette Fuel Complex that adversely affected local residents's health. In particular, we verified the concentration distribution and characteristics of exposure for TSP, $PM_{10}$, and $PM_{2.5}$ among particulate matters, and heavy metals(Cd, Cr, Cu, Mn, Ni, Pb, Fe, Zn, and Mg). In that regard, the official test method on air pollution in Korea for analysis of particulate matter and heavy metal in atmosphere were conducted. The large capacity air sampling method by the official test method on air pollution in Korea were applied for sampling of heavy metals in atmosphere. In addition, we evaluated the concentration of seasonal environmental pollutants for each point of residence in Ansim Briquette Fuel Complex and surrounding area. The sampling measured periods for air pollutants were from August 11, 2013 to February 21, 2014. Furthermore, we measured and analyzed the seasonal concentrations(summer, autumn and winter). Results: The average concentration for TSP, $PM_{10}$, and $PM_{2.5}$ by direct influence area at Ansim Briquette Fuel Complex were 1.7, 1.4 and 1.9 times higher than reference region. In analysis results of seasonal concentrations for particulate matter in four direct influence and reference area, concentration levels for winter were generally somewhat higher than concentrations for summer and autumn. The average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were $0.0008{\pm}0.0004{\mu}g/Sm^3$, $0.0141{\pm}0.0163{\mu}g/Sm^3$, $0.0248{\pm}0.0059{\mu}g/Sm^3$, $0.0026{\pm}0.0011{\mu}g/Sm^3$, $0.0272{\pm}0.0084{\mu}g/Sm^3$, $0.4855{\pm}0.1862{\mu}g/Sm^3$, and $0.3068{\pm}0.0631{\mu}g/Sm^3$, respectively. In particularly, the average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were 1.9, 3.6, 2.1, 1.9, 1.4, 2.6, and 1.2 times higher than reference area, respectively. The continuous monitoring and management were required for some heavy metals such as Cr and Ni. Moreover, the average concentration in winter for particulate matter in direct influence area at Ansim Briquette Fuel Complex were generally higher than concentrations in summer and autumn. Also, average concentrations for TSP, $PM_{10}$, and $PM_{2.5}$ were from 1.5 to 2.0 times, 1.2 to 1.8 times, and 1.1 to 2.3 times higher than reference area, respectively. In results for seasonal atmospheric environment, TSP, $PM_{10}$, $PM_{2.5}$, and heavy metal concentrations in direct influence area were higher than reference area. Especially, the concentrations in C station were a high level in comparison with other area. Conclusions: In the results, some particulate matters and heavy metals were relatively high concentration, in order to understand the environmental pollution level and health effect in surrounding area at Ansim Briquette Fuel Complex. The concentration of some heavy metals emitted from direct influence area at Ansim Briquette Fuel Complex were relatively higher than reference area. In particular, average concentration for heavy metals in this study were higher than average concentrations in air quality monitoring station for heavy metal for 7 years in Deagu metropolitan region. Especially, the residents near Ansim Briquette Fuel Complex may be exposed to the pollutants(TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals, etc) emitted from the factories in Ansim Briquette Fuel Complex.

과수 및 화훼 시설하우스 내 작업자의 미세먼지 노출현황 모니터링 (Monitoring of Working Environment Exposed to Particulate Matter in Greenhouse for Cultivating Flower and Fruit)

  • 서효재;김효철;서일환
    • 생물환경조절학회지
    • /
    • 제31권2호
    • /
    • pp.79-89
    • /
    • 2022
  • 본 연구에서는 한라봉 3농가, 절화장미 3농가를 대상으로 시설하우스 내부 농작업 종류와 특성에 따른 시설 내 작업자의 미세먼지 노출 현황과 특성을 파악하기 위하여 미세먼지 모니터링을 수행하였다. 한라봉 시설하우스 내부 경운작업의 경우 작업자가 지역시료에 비해 개인시료 측정 농도가 TSP 4.9배, PM-10 2.7배, PM-2.5 1.5배로 더 높게 나타났다. 절화장미 작업자는 개인시료의 경우 지역시료에 비해 TSP 농도 7.4배, PM-10 농도 3.2배 높은 것으로 나타나 시설 내부 작업 시 작업자는 전반적으로 더 높은 분진 환경에 노출되는 것으로 나타났다. 시설하우스 미세먼지 입경별 기여도 분석 결과, 10㎛ 이상의 큰 입자 분포를 가진 미세먼지가 경운작업 시 기계적 분쇄과정을 거쳐 한라봉 시설하우스에서 발생한 것으로 추정된다. 절화 장미 옆순 정리 작업 시 상대적으로 PM-10의 입경 분포를 가진 미세먼지 농도가 발생하는 것으로 판단되며, PM-2.5 크기를 가지는 입자에 의한 영향은 상대적으로 크지 않을 것으로 사료된다. 시설하우스 내부 작업동선에 따른 미세먼지 노출 특성 분석 결과, 경운작업 시 10㎛ 전·후의 미세먼지 농도가 증가한 것으로 나타났고, 시설하우스 작업시기와 이동시기와 비교하여 입경별 미세먼지 농도는 유의한 차이가 있으며, 작업 시 미세먼지 농도가 유의하게 높게 나타났다(p < 0.001). 한라봉 시설하우스 내부 이동시기 대비 경운작업시기의 경우 TSP 농도 3.8배, PM-10 농도 2.1배, PM-2.5 1.3배, PM-1.0 1.1배가 증가하였다. 절화장미 농가에서 이동 시 작업자에게 노출되는 미세먼지 농도의 경우 일반 대기환경 농도와 유사한 수준인 것으로 나타났지만, 이동시기 대비 작업시기에 TSP 농도가 3.4배, PM-10 3.2배, PM-2.5 1.6배, PM-1.0 1.1배 증가하였다. 작업동선별 미세먼지 농도 증가 추이 분석 결과, 미세먼지의 입경이 큰 범위에 속하는 TSP, PM-10의 경우 작업 시 TSP와 PM-10 평균 농도의 편차가 크게 나타났으며, 이는 농가별 작업의 종류, 시설 규모, 환기량, 농가의 운영관리상태 등에 따라 미세먼지 발생 영향에 기인한 것으로 판단된다. 본 연구의 시설하우스 내부 작업자의 미세먼지 노출현황과 특성 분석을 기반으로 시설하우스 내부 미세먼지 저감 프로그램 개발 및 작업 환경 개선 방안 마련을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

익산지역에서 황사발생시 PM2.5, PM10 TSP의 농도 특성 (Concentration Characteristics of Atmospheric PM2.5, PM10 and TSP during the Asian Dust Storm in Iksan Area)

  • 강공언;김남송;김경숙;김미경;이현주
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.408-421
    • /
    • 2007
  • The concentration characteristics of atmospheric particle matters (PM) including $PM_{2.5},\;PM_{10}$, and TSP were evaluated through the measurement data of PM_{2.5}$ (fine particulate), PM_{10-2.5}$ (coarse particulate), and PM_{over-10}$ collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in spring of 2006 in Iksan area. During the sampling period of 10-15 March and 24 days from 8 April to 2 May, 32 samples for PM of each size fractions were collected, and then measured for PM mass concentrations and water-soluble inorganic ion species. Average concentrations of $PM_{2.5},\;PM_{10}$, TSP were $57.9{\pm}44.1mg/m^3$, $96.6{\pm}89.1mg/m^3$, and $114.8{\pm}99.7mg/m^3$, respectively. Water-soluble inorganic ion fractions to PM mass were found to be 36.5%, 18.0%, and 11.1% for $PM_{2.5}$, $PM_{10-2.5}$ and $PM_{over-10}$, respectively. By showing the high concentrations of PM samples during Asian dust events, those three fractions of PM were distinguished between the samples of Asian dust event and the samples of no event. However, the increase of PM concentrations observed during Asian dust events showed a different pattern for some Asian dust events. The differences of those three fractions in the size distribution may depend on differences on place of occurrence of Asian dust storm and course of transport from China continent to Iksan area in Korea. However, the extent of PM mass contribution during Asian dust events was generally dominated by the coarse particles rather than the fine fraction of PM. The variations of water-soluble inorganic ion species concentration in those three PM fractions between the samples of Asian dust event and the samples of no event were also discussed in this study.

Hood Method를 이용한 직화구이 음식점의 미세먼지 배출 특성 (Emission Characteristics of Particulate Matters from Under-fired Charbroiling Cooking Process using the Hood Method)

  • 이준복;김흥주;정권;김신도
    • 한국환경보건학회지
    • /
    • 제35권4호
    • /
    • pp.315-321
    • /
    • 2009
  • Under-fired charbroiling cooking processes are known as important contributors of particulate matter (PM). In this study, we characterized the emission of particulate matters from under-fired charbroiling cooking processes using the hood method. Accumulated mass concentration of $PM_{10}$ was 92.2~99.5% and particle size of 2.0~2.5 ${\mu}m$ was highest. The concentration of PM increased very sharply at the beginning of charbroiling meats and then gradually decreased as the charbroiling continued. PM concentration also increased very sharply when gravy from meat spilled onto the frame of fire. However, mass concentration during charbroiling using only charcoals was very low compared to that of meats. We estimated the emission factors of charcoal, pork belly and pork shoulder respectively; 0.01~0.02 g/kg, 5.02~6.26 g/kg, 2.86~4.15 g/kg of $PM_{2.5}$, 0.01~0.03 g/kg, 7.44~7.91 g/kg, 4.54~5.56 g/kg of $PM_{10}$, and 0.02~0.05 g/kg, 7.59~7.95 g/kg, 4.93~5.68 g/kg of TSP. The emission factors of charcoal were negligible and the emission factors of pork belly were higher than that of pork shoulder. Emission rates of particulate matters from under-fired charbroiling cooking process were estimated as 578,009~1,265,152 kg/yr of $PM_{2.5}$, 917,539~1,598,619 kg/yr of $PM_{10}$ and 996.358~1,606,703 kg/yr of TSP. But emission factors should be verified with an in-stack cascade impactor because the reported method involves some assumptions.