DOI QR코드

DOI QR Code

Mass Size Distribution of Atmospheric Aerosol Particles with Nanosampler Cascade Impactor in Jinju City

다단 임팩터 Nanosampler를 이용한 진주시 대기에어로졸입자의 입경별 질량농도 특성

  • Park, Jeong-Ho (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Jang, Min-Jae (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Hyoung-Kab (Department of Environmental Engineering, Gyeongnam National University of Science and Technology)
  • 박정호 (경남과학기술대학교 환경공학과) ;
  • 장민재 (경남과학기술대학교 환경공학과) ;
  • 김형갑 (경남과학기술대학교 환경공학과)
  • Received : 2015.02.24
  • Accepted : 2015.03.20
  • Published : 2015.05.30

Abstract

Atmospheric aerosol particles were investigated at GNTECH university in Jinju city. Samples were collected using the Nanosampler period from January to December 2014. The Nanosampler is a 6 stage cascade impactor(1 stage : > $10{\mu}m$, 2 stage : $2.5{\sim}10{\mu}m$, 3 stage : $1.0{\sim}2.5{\mu}m$, 4 stage : $0.5{\sim}10{\mu}m$, 5 stage : $0.1{\sim}0.5{\mu}m$, back-up : < $0.1{\mu}m$) with the stages having 50% cut-off ranging from 0.1 to $10{\mu}m$ in aerodynamic diameter. The mass size distribution of Atmospheric aerosol particles was unimodal with peak at $1.0{\sim}2.5{\mu}m$ or $0.5{\sim}1.0{\mu}m$. The annual average concentrations of TSP, $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ were $44.0{\mu}g/m^3$, $40.3{\mu}g/m^3$, $31.4{\mu}g/m^3$, $18.0{\mu}g/m^3$, $8.0{\mu}g/m^3$, $3.0{\mu}g/m^3$, respectively. On average $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ make up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of $PM_{2.5}/PM_{10}$ ratio was 0.77.

Keywords

References

  1. Delfino, R. J., Sioutas, C., Malik, S., 2005, Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health, Environ. Health Perspect., 113, 934-946. https://doi.org/10.1289/ehp.7938
  2. Donaldson, K., Li, X. Y,, MacNee, W., 1998, Ultrafine (nanometer) particle mediated lung injury, Journal of Aerosol Science, 29(5/6), 553-560. https://doi.org/10.1016/S0021-8502(97)00464-3
  3. Eryu, K., Seto, T., Mizukami, Y., Nagura, M., Furuuchi, M., Tajima, N., Kato, T., Ehara, K., T., Otani, Y., 2009, Design of inertial filter for classification of $PM_{0.1}$, Earozory Kenkyu, 24, 24-29.
  4. Filippo, P. D., Pomata, D., Riccardi, C., Buiarelli, F., Gallo, V., Quaranta, A., 2014, Free and combined amino acids in size-segregated atmospheric aerosol samples, Atmospheric Environment, 98, 179-189. https://doi.org/10.1016/j.atmosenv.2014.08.069
  5. Furuuchi, M., Eryu, K., Nagura, M., Hata, M., Kato, T., Tajima, N., Sekigucji, K., Ehara, K., Seto, T., Otani, Y., 2010, Development and performance evaluation of air sampler with inertial filter for Nanoparticle sampling, Aerosol and Air Quality Research, 10, 185-192.
  6. Health Effects Institute(HEI), 2013, Understanding the health effects of ambient ultrafine particles, HEI Perspectives 3, Boston, USA.
  7. Hering, S.V., Appel, B.R., Cheng, W., Salaymeh, F., Cadle Mulawa, S.H.P.A., Cahill, T.A., Eldred, A., Surovik, M., Fitz, D., Howes, J.E., Knapp, K.T., Stockburger, L., Turpin, B.J., Huntzicker, J.J., Zhang, X.-Q., McMurry, P.H., 1990, Comparison of sampling methods for carbonaceous aerosols in ambient air, Aerosol Science and Technology, 12(1), 200-213. https://doi.org/10.1080/02786829008959340
  8. Hering, S. V., Friedlander, S. K., Collins, J. J., Richards, L. W., 1979, Design and evaluation of a new low-pressure impactor. 2, Environ. Sci. Technol., 13(2), 184-188. https://doi.org/10.1021/es60150a009
  9. Hillamo, R. E., Kauppinen, E. I., 1991, On the Performance of the Berner Low Pressure Impactor, Aerosol Science and Technology, 14, 33-47. https://doi.org/10.1080/02786829108959469
  10. Hinds, W. C., 1982, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley and Sons Inc.; 120-150.
  11. Jeon, B. I., Hwang, Y. S., 2014, Characteristics of weekday/weekend PM10 and PM2.5 concentrations at Busan, Journal of Environmental Science International, 23(7), 1241-1251. https://doi.org/10.5322/JESI.2014.23.7.1241
  12. Kim, Y. P., Bae, G. N., Ji, J. H., Jin, H. C., Moon, K. C., 1999, Aerosol size distribution and composition at Kosan, Cheju island: Measurements in April 1998, J. KOSAE, 15(5), 677-685.
  13. Kim, S. Y., 2007, Characteristics of size distribution and size-resolved source estimation of soluble species in background sites, Master's degree Konkuk university.
  14. Lee, H. B., Oh, S. E., 2008, Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan city between 2006 and 2007, Journal of the Korea Academia-Industrial cooperation Society, 9(5), 1349-1353. https://doi.org/10.5762/KAIS.2008.9.5.1349
  15. Lee, K. H., Yang, H. J., Hu C. G., 2003, Size distribution of ambient aerosol measured at a coastal site in Jeju island, Journal of the Environmental Sciences, 12(10), 1043-1054. https://doi.org/10.5322/JES.2003.12.10.1043
  16. Marple, V. A., Willeke, K., 1976, Impactor design, Atmospheric Environment, 10, 891-896. https://doi.org/10.1016/0004-6981(76)90144-X
  17. Michael, D. G., Seongheon, K., Chandan, M., Constantinos, S., Bernard, A. O., Virgil, A. M., 2002, A methodology for measuring size-dependent chemical composition of ultrafine particles, Aerosol Sci. Technol., 36, 748-762. https://doi.org/10.1080/02786820290038447
  18. National Institute of Environmental Research(NIER), 2009, Study on the characteristic on physical and chemical properties of PM2.5, NIER NO. 2009-41-1097.
  19. Oh, M. S., Lee, T. J., Kim, D. S., 2009, Characteristics of ionic components in size-resolved particulate matters in Suwon area, J. KOSAE, 25(1), 46-56
  20. O'Shaughnessy, P. T., Raabe, O. G., 2003, A comparison of cascade impactor data reduction methods, Aerosol Sci Technol, 37, 187-200 https://doi.org/10.1080/02786820300956
  21. Otani, Y., Eryu, K., Furuuchi, M., Tajima, N., Tekasakul, P. (2007) Inertial classification of Nanoparticles with fibrous filters, Aerosol and Air Quality Research, 7, 343-352.
  22. Pakkanen, T. A., Kerminen, V., Korhonen, C. H., Hillamo, R. E., Aarnio, P., Koskentalo, T., Maenhaut, W., 2001, Urban and rural ultrafine(PM0.1) particles in the Helsinki area, Atmospheric Environment, 35, 4593-4607. https://doi.org/10.1016/S1352-2310(01)00167-4
  23. Park, J. H., Park, G. H., Suh, J. M., 2014, Characterization of PM10 and PM2.5 mass concentrations in Jiju, Journal of Environmental Science International, 23(12), 1963-1970. https://doi.org/10.5322/JESI.2014.23.12.1963
  24. Park, J. H., Choi, K. C., 1997, Characteristics of chemical composition and size distribution of atmospheric aerosols by low-pressure impactor, J. KOSAE, 13(6), 475-486.
  25. Sienfeld, J. H., Pandis, S. N., 1998, Atmospheric chemistry and physics, John wiley & sons, Inc., 408-447.
  26. Wang, H. C., John, W., 1988, Characteristics of the Berner impactor for sampling Inorganic Ions, Aerosol Science and Technology, 8, 157-172. https://doi.org/10.1080/02786828808959179
  27. Willeke, K., Whitby, K. T., 1975, Atmospheric aerosols: size distribution interpretation, Journal of the Air Pollution Control Association, 25, 529-534. https://doi.org/10.1080/00022470.1975.10470110
  28. Zahang, X., McMurry, P. H., 1991, Theoretical analysis of evaporative losses of adsorbed species during atmospheric aerosol sampling, Environ. Scl. Technol., 25, 456-459. https://doi.org/10.1021/es00015a012

Cited by

  1. Characteristics of Size Distribution and Fugitive Emissions of Particulate Matter in Foundries vol.26, pp.1, 2016, https://doi.org/10.15269/JKSOEH.2016.26.1.30