• Title/Summary/Keyword: $Spin^c$-structure

Search Result 287, Processing Time 0.024 seconds

Pulsed NMR Study of $CuF_{2}.2H_{2}O$ ($CuF_{2}.2H_{2}O$의 펄스 핵자기공명 연구)

  • Lee, C.E.;Yoon, E.H.;Lee, C.H.;Kim, K.;Jeon, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 1993
  • We have studied $CuF_{2}.2H_{2}O$ using $^{1}H$ and $^{19}F$ pulsed nuclear magnetic resonance at 30 MHz. From the data of lineshapes, the spin-lattice relaxation times ($T_1$) and the spin echo decay times, lattice dynamics in the structure is investigated. $T_1$ data from both $^{1}H$ and $^{19}F$ NMR indicate that spin-lattice relaxation is dominated by the paramagnetic ion centers at the Cu sites. The lineshapes at room temperature appear to be strongly affected by exchange narrowing and motional narrowing.

  • PDF

Electric properties of Polymethyl methacrylate(PMMA) Films to thermal treatment Prepared by Spin Coating (회전 도포 공정을 이용한 Polymethyl methacrylate(PMMA) 박막의 열처리에 따른 전기적 특성 평가)

  • Na, Moon-Kyong;Kang, Dong-Pil;Ahn, Myeog-Sang;Myung, In-Hye;Kang, Young-Taec
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1924-1926
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA) is one of the promising representive of polymer gate dielectric for its high resistivity and sutible dielectric constant. PMMA (Mw=96700) films were prepared on p-Si by spin coating method. PMMA were coated compactively and flatly as observes by AFM. MIS(Al/PMMA/p-Si) structure was made and capacitance-voltage (C-V) and current-voltage (I-V) measurements were done with PMMA films for repeated annealing cycles at $100^{\circ}C$. 1-V measured at various delay times $(0{\sim}20sec)$ showed little change and the absence of hysteresis in the I-V characteristics with delay times, which eliminate the possibility of deep traps in the PMMA films. The observed thermal stability, smooth surfaces, dielectric constant, I-V behavior implies PMMA formed by spin coating can be used as an efficient gate dielectric layer in OTFTs.

  • PDF

Anomalous Exchange Bias of the Top and Bottom NiFe Layers in NiFe/FeMn/NiFe Based Spin Valve Multilayers (NiFe/FeMn/NiFe 스핀밸브 구조의 다층박막에서 상 하부 NiFe 두께에 따른 교환바이어스 조사)

  • S.M. Yoon;J.J. Lim;V.K. Sankar;Kim, C.G.;Kim, C.O.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.212-212
    • /
    • 2003
  • Many of the spin valve multilayer structures with FeMn as antiferromagnetic layer consist of a NiFe/FeMn/NiFe trilayer where the bottom NiFe layer is the seed layer to facilitate the growth of (111) gama-FeMn antiferromagnetic phase and the top NiFe layer forms the pinned layer[1], In this study, exchange bias of bottom NiFe layer has been investigated as functions of thicknesses of top and bottom NiFe in NiFe/FeMn/NiFe, prepared by rf magnetron sputtering, MH-loop was measured by vibration sample magnetometer (VSM). Two hysteresis loops are corresponded to bottom and top layers, similar to reported loops in spin valve structure. Exchange bias of bottom NiFe could be induced by the interfacial coupling between bottom NiFe and FeMn. But those coupling are strongly dependent on the top and bottom NiFe thicknesses, revealing anomalous character ul exchange bias of bottom NiFe layer.

  • PDF

The Study on Location and Adsorbate Interaction for Vanadium Species in $VO^{2+}-SAPO-5$ by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies

  • Back Gern-Ho;Park Sung-Gun;Lee Chul-Wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.138-154
    • /
    • 2005
  • Vanadium-incorporated aluminophosphate molecular sieve $VO^{2+}-SAPO-5$ was studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies to determine the vanadium structure and interaction with various adsorbate molecules. It was found that the main species at low concentration of vanadium is a monomeric vanadium units in square pyramidal or distorted octahedral coordination, both in oxidation state (IV) for the calcined hydrated material and in oxidation state (V) for the calcined material. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. It is suggested as a $VO(H_2O)_3^{2+}$ complex coordinated to two framework oxygen bonded aluminum. When calcined, hydrated $VO^{2+}-}SAPO-5$ is dehydrated at elevated temperature, a species loses its water ligands and transforms to $VO^{2+}$ ions coordinated to two framework oxygens (species B). Species B reduces its intensity, significantly after treatment with $O_2\;at\;600^{\circ}C$ for 5 h, thus suggesting oxidation of $V^{4+}\;to\;V^{5+}$. When dehydrated $VO^{2+}-SAPO-5$ contacts with $D_2O$ at room temperature, the EPR signal of species A is observed. Thus species assumed as a $VO^{2+}(O_f)_2(D_2O)_3$, by considering two framework oxygens. Adsorption of deuterated ethanol, propanol on dehydrated $VO^{2+}_{-}SAPO-5$ result in another new vanadium species E and F, respectively, which are identified as a $VO^{2+}-(CH_3CH_2OD)_3,\;VO^{2+}-(CH_3CH_2CH_2OD)_2$ complex. When deuterated benzene is adsorbed on dehydrated $VO^{2+}-SAPO-5$, another new vanadium species G, identified as a $VO^{2+}-(C_6D_6)$ is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

4f spin dynamics in TbNi$_2$B$_2$C by $^{11}$B NMR

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Hong, K.S.;Cho, B.K.;Lee, W.C.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.61-64
    • /
    • 2000
  • $^{11}$B NMR measurements have been performed to investigate local electronic structure and 4f spin dynamics for TbNi$_2$B$_2$C single crystal. $^{11}$B NMR spectra show three resonance peaks due to the quadrupolar interaction. Shift and linewidth are huge and strongly temperature-dependent. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. $^{11}$B NMR shift and relaxation rates show high anisotropy for field parallel and perpendicular to the c-axis. Anisotropy of the shift and the relaxation rates suggests that the hyperfine field perpendicular to the c-axis is larger.

  • PDF

Molecular Motions of [N(C2H5)4]+ and [N(CH3)4]+ ions by 1H Nuclear Magnetic Resonance Relaxation in [N(C2H5)4]2CoCl4 and [N(CH3)4]2CoCl4 Single Crystals

  • Yoon, Su-A;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.146-156
    • /
    • 2011
  • The line widths and spin-lattice relaxation times of protons in $[N(C_2H_5)_4]_2CoCl_4$ and $[N(CH_3)_4]_2CoCl_4$ single crystals were investigated in the temperature range 160-400 K. The temperature dependences of the spin-lattice relaxation times are attributed to the molecular motions of the ethyl and methyl groups in the $[N(C_2H_5)_4]^+$ and $[N(CH_3)_4]^+$ ions respectively. The NMR line widths indicate that the ethyl groups in $[N(C_2H_5)_4]_2CoCl_4$ have one more degree of freedom than the methyl groups in $[N(CH_3)_4]_2CoCl_4$. The experimental results are interpreted in terms of the reorientations of the methyl and ethyl groups.

The Giant Magnetoresistance Properties of CoFe/Cu/NiFe Pseudo Spin Valve (CoFe/Cu/NiFe Pseudo스핀밸브의 자기저항 특성)

  • Choi, W.J.;Hong, J.P.;Kim, T.S.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.212-217
    • /
    • 2002
  • The pseudo spin valve with a structure of Tl/CoFe(t $\AA$)/Cu(30 $\AA$)/NiFe(50 $\AA$)/Ta, showing giant magnetoresistance properties by utilizing coercivity difference between only two soft ferromagnetic layers were produced by d.c UHV magnetron sputtering system. In pseudo spin valve Ta/CoFe/Cu/NiFe/Ta, the magnetic and magnetoresistance properties with change of CoFe thickness were investigated. When the thickness of CoFe was 60 $\AA$, a typical MR curve of pseudo spin valve structure was obtained, showing MR ratio of 3.8 cio and the coercivity difference of 27.4 Oe with a sharp change of hard layer switching. When the CoFe thickness was varied from 20 to 100 $\AA$, coercivity difference between two layers was increased to 40 $\AA$. and decreased to 100 $\AA$ gradually. It is thought the change in coercivity of hard layer was due to the crystallinity and magnetostriction of thin CoFe layer. In order to improve the MR property in CoFe/Cu/NiFe trier layer structure, CoFe layer with change of 2-20 $\AA$ thick was inserted between Cu and NiFe. When the thickness of CoFe was 10 $\AA$, MR ratio was 6.7%, showing excellent MR property. This indicates 50 % higher than that of CoFe/Cu/NiFe pseudo spin valve.

Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111)

  • Kim, Hyun-Jung;Oh, Sang-Chul;Kim, Ki-Seok;Zhang, Zhenyu;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.56-56
    • /
    • 2010
  • Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has $\pi$ electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized $\pi$ electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively.

  • PDF

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.