Browse > Article
http://dx.doi.org/10.6564/JKMRS.2011.15.2.146

Molecular Motions of [N(C2H5)4]+ and [N(CH3)4]+ ions by 1H Nuclear Magnetic Resonance Relaxation in [N(C2H5)4]2CoCl4 and [N(CH3)4]2CoCl4 Single Crystals  

Yoon, Su-A (Department of Science Education, Jeonju University)
Lim, Ae-Ran (Department of Science Education, Jeonju University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.15, no.2, 2011 , pp. 146-156 More about this Journal
Abstract
The line widths and spin-lattice relaxation times of protons in $[N(C_2H_5)_4]_2CoCl_4$ and $[N(CH_3)_4]_2CoCl_4$ single crystals were investigated in the temperature range 160-400 K. The temperature dependences of the spin-lattice relaxation times are attributed to the molecular motions of the ethyl and methyl groups in the $[N(C_2H_5)_4]^+$ and $[N(CH_3)_4]^+$ ions respectively. The NMR line widths indicate that the ethyl groups in $[N(C_2H_5)_4]_2CoCl_4$ have one more degree of freedom than the methyl groups in $[N(CH_3)_4]_2CoCl_4$. The experimental results are interpreted in terms of the reorientations of the methyl and ethyl groups.
Keywords
protaetiamycine analogue; antimicrobial peptide; bacterial cell selectivity; NMR; structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Kahrizi, M.O. Steinitz, Solid State Commun. 74, 333, (1990).   DOI
2 M.A. Kandhaswamy, V. Srinivasan, Bull. Mat. Sci. 25, 41, (2002).   DOI
3 A. Abragam, "The Principles of Nuclear Magneism" Oxford University Press, Cambridge, (1997).
4 B. Cowan, "Nuclear Magnetic Resonance and Relaxation" Cambridge University Press,Cambridge, (1997).
5 I. Bertini, C. Luchinat, G. Parigi, "Solution NMR of Paramagnetic Molecules" Elsevier Science B. V., Amsterdam, (2001).
6 J. Berger, J.P. Benoit, C.W. Garland, P.W. Wallace, J. Phys. 47, 483, (1986).   DOI
7 A.P. Levanyuk, in: R. Blinc, A.P. Levanyuk (Eds.), "Incommensurate Phases in Dielectrics, Part I, Fundamentals", North-Holland, Amsterdam, (1986).
8 P. Biskupski, Z. Tylczynski, M. Slaboszewska, Ferroelectrics Letters 28, 55, (2001).   DOI
9 Z. Tylczynski, P. Biskupski, M. Slaboszewska, Ferroelectrics 272, 315, (2002).   DOI
10 G. Madariaga, F.J. Zuniga, J.M. Perez-Mato, M.J. Tello, Acta Cryst. B43, 356, (1987).
11 A.R. Lim, W.K. Jung, J. Phys. Chem. Solids 66, 1795, (2005).   DOI
12 G.D. Stucky, J.B. Folkers, T.J. Kistenmacher, Acta Cryst. 23, 1064, (1967).   DOI
13 S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, M. Matsuo, Phys. Lett. A67, 56, (1978).
14 J.R. Wiesner, R.C. Stivastava, C.H.L. Kennard, M. Divaira, E.C. Lingafelter, Acta Cryst. 23, 565, (1967).   DOI
15 A.R. Lim, J. Phys. Chem. Solids 66, 973, (2005).   DOI
16 A.R. Lim, K.Y. Lim, J. Phys. Chem. Solids 68, 576, (2007).   DOI
17 A.J. Wolthuis, W.J. Huiskamp, L.J.de Jongh, Physica. B142, 301, (1986).