• Title/Summary/Keyword: $Si_3N_4$ rib-optical waveguide

Search Result 7, Processing Time 0.027 seconds

Fabrication of buried $Si_3N_4-SiO_2$ rib waveguide Bragg reflectors on Si and calculation of effective reflective indices (Si 기판 $Si_3N_4-SiO_2$ rib형 광도파로의 매립형)

  • 이형종
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.218-221
    • /
    • 1989
  • Buried Bragg reflectors which are immune to the contamination of the surface of an optical waveguide chip are fabricated on Si3N4-SiO2 rib optical waveguides on Si. The effective refractive indices and the bandwidths of the fabricated buried Bragg reflector waveguides are determined by transmission measurement. We show that the measured values of the effective refractive indices are consistent with the calculated values as the width of the waveguide rib varies. Propagation losses of the guided modes due to the leakage into the si substrate are also calculated.

  • PDF

Analysis and Design of Si3N4 Rib-optical Waveguides for Evanescent-wave Integrated-optical Biosensors (소산파 집적광학 바이오센서에 적합한 Si3N4 립-광도파로 해석 및 설계에 관한 연구)

  • Jung, Hongsik
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • $Si_3N_4$ rib-optical waveguides for evanescent-wave integrated-optical biosensors were analytically interpreted, to derive the single-mode propagation conditions. The integrated-optical biosensor structure based on two-mode interference was proposed, and the rib width and thickness and core thickness for a single-mode and two-mode waveguide (sensing region) were proposed to be $3{\mu}m$, 2 nm, and 150 nm and $3{\mu}m$, 20 nm, and 340 nm respectively. The optical characteristics of each guided-wave mode were investigated utilizing the film mode-matching (FMM) analysis.

Design of Integrated-Optic Biosensor Based on the Evanescent-Field and Two-Horizontal Mode Power Coupling of Si3N4 Rib-Optical Waveguide (Si3N4 립-광도파로의 두-수평모드 파워결합과 소산파 기반 집적광학 바이오센서 설계)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.172-179
    • /
    • 2020
  • We studied an integrated-optic biosensor configuration that operates at a wavelength of 0.63 ㎛ based on the evanescent-wave and two horizontal mode power coupling of Si3N4 rib-optical waveguides formed on a Si/SiO2/Si3N4/SiO2 multilayer thin films. The sensor consists of a single-mode input waveguide, followed by a two-mode section which acts as the sensing region, and a Y-branch output for separating the two output waveguides. The coupling between the two propagating modes in the sensing region produces a periodically repeated optical power exchanges along the propagation. A light power was steered from one output channel to the other due to the change in the cladding layer (bio-material) refractive index, which affected the effective refractive index (phase-shift) of two modes through evanescent-wave. Waveguide analyses based on the rib optical waveguide dimensions were performed using various numerical computational software. Sensitivity values of 12~23 and 65~165 au/RIU, respectively for the width and length of 4 ㎛, and 3841.46 and 26250 ㎛ of the two-mode region corresponding to the refractive index range 1.36~1.43 and 1.398~1.41, respectively, were obtained.

A Study on the Design and Performance of Integrated-Optic Biosensor utilizing the Multimode Interferometer based on Si3N4 Rib-Optical Waveguide and Evanescent-Wave (Si3N4 립-광도파로 기반 다중모드 간섭기와 소산파를 이용하는 집적광학 바이오센서 설계 및 성능에 관한 연구)

  • Jung, Hong sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.409-418
    • /
    • 2020
  • In this paper, an integrated optical, evanescent-wave biosensor utilizing a multimode interferometer based on a Si3N4 rib-optical waveguide consisting of the Si/SiO2/Si3N4/SiO2 stacked structure was described. The theoretical background of the multimode interferometer was reviewed, and the structure and design process were presented through numerical computational analysis. We analyzed how the dimension (length, width) of the multimode interferometer affected the sensor performance. It has been confirmed through computational analysis that the changes in the refractive index of an analyte greatly affect the mode pattern formation position and output optical power of a multimode interferometer, and proved that this principle could be applied to integrated-optic biosensor.

Tunable bragg filter of $Si_3N_4-SiO_2$ waveguide using thermooptic effect (열광학 효과를 이용한 $Si_3N_4-SiO_2$ 도파로 가변 브래그필터)

  • 이형종;정환재
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.244-251
    • /
    • 1992
  • Buried Bragg filters of single mode $Si_{3}N_{4}$ rib waveguide with a cover layer of $SiO_{2}$ and grating at the interface of $Si_{3}N_{4}$ and $SiO_{2}$ are designed and fabricated. Etching of the grating on $Si_{3}N_{4}$ waveguide core by buffered HF showed uniform etching with good control up to 1 nm. This buried type of Bragg filters are immune to contamination of the surface of device. The mode index and bandwidth of filters are determined by measurements of the transmission spectrum of Bragg filters and compared with that of calculation. Waveguide Bragg filters loaded with the micro-heater of Cr film and the cladding of silicone rubber are made to control the Brag wavelength of the filter. As a result the filter wavelength of the device moved by 0.41 nm for 10 mA current to the shorter side of wavelength proportional to the square of the current.

  • PDF

A Study on the Optimization of Silicon Antiresonant Reflecting Optical Waveguides (ARROW) for Integrated Optical Sensor Applications (집적광학 센서 응용에 적합한 실리콘 비공진 반사형 광도파로 최적화에 관한 연구)

  • Jung, Hong-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • We optimized the Si(substrate)/$SiO_2$(cladding)/$Si_3N_4$(antiresonant cladding)/$SiO_2$(core)/air multi-layers rib-optical waveguides of antiresonant reflecting optical waveguide (ARROW) for integrated optical biosensor structure utilizing beam propagation method (BPM). Thickness of anti-resonant cladding was derived to minimize the propagation loss and leaky field mode deeply related with evanescent mode was theoretically derived. Depth, width, refractive index and cladding thickness of anti-resonant cladding were numerically calculated into 2.3${\mu}m$, 5${\mu}m$, 1.488, and 0.11${\mu}m$ respectively to minimize propagation loss using the BPM simulation tool. Finally one- and two-dimensional propagation characteristics of ARROW was confirmed.