Browse > Article
http://dx.doi.org/10.3807/KJOP.2019.30.1.015

Analysis and Design of Si3N4 Rib-optical Waveguides for Evanescent-wave Integrated-optical Biosensors  

Jung, Hongsik (Department of Electronics & Electrical Convergence Engineering, College of Science & Technology, Hongik University)
Publication Information
Korean Journal of Optics and Photonics / v.30, no.1, 2019 , pp. 15-22 More about this Journal
Abstract
$Si_3N_4$ rib-optical waveguides for evanescent-wave integrated-optical biosensors were analytically interpreted, to derive the single-mode propagation conditions. The integrated-optical biosensor structure based on two-mode interference was proposed, and the rib width and thickness and core thickness for a single-mode and two-mode waveguide (sensing region) were proposed to be $3{\mu}m$, 2 nm, and 150 nm and $3{\mu}m$, 20 nm, and 340 nm respectively. The optical characteristics of each guided-wave mode were investigated utilizing the film mode-matching (FMM) analysis.
Keywords
Silicon phonics; Integrated optic biosensor; $Si_3N_4$ rib-optical waveguide; Two-mode interference; Film mode matching analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, "Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line," IEEE Photon. J. 5, 2202809-2202809 (2013).   DOI
2 J.-C. Tinguely, O. I. Helle, and B. S. Ahluwalia, "Silicon nitride waveguide platform for fluorescence microscopy of living cells," Opt. Express 25, 27678-27690 (2017).   DOI
3 A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, "Silicon-nitride waveguides for on-chip Raman spectroscopy," Proc. SPIE 9141, 91411C (2014).
4 G. Vurtsever, P. Dumon, W. Bogaerts, and R. Baets, "Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography," Proc. SPIE 7554, 75514B (2010).
5 F. T. Dullo, S. Lindecrantz, J. Jagerska, J. H. Hansen, M. Engqvist, S. A. Solbo, and O. G. Helleso, "Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer," Opt. Express 23, 31564-31573 (2015).   DOI
6 H. Jung, "A study on the normalized analysis of sensitivity optimization of evanescent-field, integrated-optic biosensor based on planar optical waveguide," J. Sensor Sci. Technol. 27, 25-30 (2018).   DOI
7 J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonator via atomic layer deposition," Opt. Express 20, 27661-27669 (2012).   DOI
8 Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, "Design and optimization of optical modulators based on graphene-on-silicon nitride micro-ring resonators," J. Opt. 19, 045801 (2017).   DOI
9 P. Muellner, E, Melnik, G. Koppitsch, J. Kraft, F Schrank, and R. Hainberger, "CMOS-compatible Si3N4 waveguides for optical biosensing," Procedia Eng. 120, 578-581 (2015).   DOI
10 A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, "Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip," Photon. Res. 3, B47-B59 (2015).   DOI
11 F. T. Dullo and O. G. Helleso, "On-chip phase measurement for micro-particles trapped on a waveguide," Lab Chip 15, 3918-3924 (2015).   DOI
12 R. A. Soref, J. Schmidtchen, and K. Peterman, "Large single-mode rib waveguides in GeSi-Si and Si-on-$SiO_2$, IEEE J. Quantum Electron. 27, 1971-1974 (1991).   DOI
13 S. P. Pogossian, L. Vescan, and A. Vonsovici, "The singlemode condition for semiconductor rib waveguides with large cross section," J. Lightw. Technol. 16, 1851-1853 (1998).   DOI
14 J. Schmidtchen, A. Splett, B. Schoppert, and K Pertermann, "Low loss single mode optical waveguides with large cross-selection in silicon-on-insulator," Electron. Lett. 27, 1486-1487 (1991).   DOI
15 Photon Design Ltd, FIMMWAVE v6.6.0, Oxford United Kingdom.
16 K. E. Zinoviev, A. B. Gonzalez-Guerrero, C. Dominguez, and L. M. Lechuga, "Integrated bimodal waveguide interferometric biosensor for label-free analysis," J. Lightw. Technol. 29, 1926-1930 (2011).   DOI
17 D. Duval, "Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers," Lab Chip 12, 1987-1994 (2012).   DOI