• Title/Summary/Keyword: $SiO_2/N$ ratio

Search Result 315, Processing Time 0.022 seconds

Synthsis of $\beta$-Sialon from Hadong Pink Kaolin (하동카올린으로부터 $\beta$-Sialon의 합성)

  • 이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 1984
  • $eta$-Sialon synthesis was investigated via the simultaneous reduction and nitridation of Hadong Pink Kaolin using the graphite as a reducing agent at 135$0^{\circ}C$ under 80% $N_2-20%H_2$ atmosphere. When Hadong Pink Kaolin-graphite-silicon nitride seed(molar ratio ; $SiO_2:C:Si_3N_4$=1;3.5:0.05) mixture was heated at 135$0^{\circ}C$ for as long as 20h in 80%$N_2-20%H_2$ atmosphere a homogeneous $eta$-Sialon$(Si_{3.5}Al_{2.5}O_{2.5}N_{2.5})$ was mainly formed together with a small amount of $\alpha$-$Si_3N_4$.

  • PDF

Immobilization of Late Transition Metal Catalyst on the Amino-functionalized Silica and Its Norbornene Polymerization (아미노-기능화된 실리카 위 후전이 금속 촉매 담지 및 이를 이용한 노보넨 중합)

  • Pacia, Rose Mardie P.;Kim, So Hui;Lee, Jeong Suk;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.313-318
    • /
    • 2016
  • In this study, an amorphous silica was functionalized with aminosilane, N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) and the late transition metal catalysts including ($(DME)NiBr_2$ and $PdCl_2$(COD)) were subsequently immobilized on the functionalized amorphous silica for norbornene polymerization. Effects of the polymerization temperature, polymerization time, Al/Ni molar ratio, and type of co-catalyst on norbornene polymerization were investigated. Unsupported late transition metal catalysts did not show any activities for norbornene polymerization. However, the $SiO_2$/2NS/Ni catayst with MAO system, with increasing polymerization temperature, increased the polymerization activity and decreased the molecular weight of the polynorbornene (PNB). Furthermore, the catalyst when increasing polymerization temperature caused the decrease in both the polymerization activity and molecular weight of PNB. This confirmed that the stability of $SiO_2$/2NS/Ni at a high temperature was greater than that of $SiO_2$/2NS/Pd. Also the longer polymerization time resulted in the higher conversion of norbornene for both catalysts. When the Al : Ni molar ratio was 1000 : 1, the highest activity (15.3 kg-PNB/($({\mu}mol-Ni^*hr$)) but lowest molecular weight ($M_n$ = 124,000 g/mol) of PNB were achieved. Also $SiO_2$/2NS/Ni catalyst with borate/TEAL resulted in diminishing the polymerization activity and molecular weight of PNB with increasing the polymerization temperature.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Fabrication and Properties of MFISFET using SrBi2Ta2O9SiN/Si Structures (SrBi2Ta2O9SiN/Si 구조를 이용한 MFISFET의 제작 및 특성)

  • 김광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.383-387
    • /
    • 2002
  • N-channel metal-ferroelectric-insulator-semiconductor field-effect-transistors (MFISFET's) by using $SrBi_2Ta_2O_9$/Silicon Nitride/Si (100) structure were fabricated. The fabricated devices exhibit comfortable memory windows, fast switching speeds, good fatigue resistances, and long retention times that are suitable for advanced ferroelectric memory applications. The estimated switching time and polarization ($2P_r$) of the fabricated FET measured at applied electric field of 376 kV/cm were less than 50 ns and about 1.5 uC/$\textrm{cm}^2$, respectively. The magnitude of on/off ratio indicating the stored information performance was maintained more than 3 orders until 3 days at room temperature. The $I_DV_G$ characteristics before and after being subjected to $10^11$ cycles of fatigue at a frequency of 1 MHz remained almost the same except a little distortion in off state.

Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer

  • Hazra, Purnima;Singh, S.K.;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.117-123
    • /
    • 2014
  • The fabrication and characterization of a Si/ZnO thin film heterojunction ultraviolet photodiode has been presented in this paper. ZnO thin film of ~100 nm thick was deposited on <100> Silicon (Si) wafer by atomic layer deposition (ALD) technique. The Photoluminescence spectroscopy confirms that as-deposited ZnO thin film has excellent visible-blind UV response with almost no defects in the visible region. The room temperature current-voltage characteristics of the n-ZnO thin film/p-Si photodiodes are measured under an UV illumination of $650{\mu}W$ at 365 nm in the applied voltage range of ${\pm}2V$. The current-voltage characteristics demonstrate an excellent UV photoresponse of the device in its reverse bias operation with a contrast ratio of ~ 1115 and responsivity of ~0.075 A/W at 2 V reverse bias voltage.

Magnetoresistance Properties of Spin Valves Using MoN Underlayer (MoN 하지층을 이용한 스핀밸브의 자기저항 특성)

  • Kim, Ji-Won;Jo, Soon-Chul;Kim, Sang-Yoon;Ko, Hoon;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.240-244
    • /
    • 2006
  • In this paper, magnetic properties and annealing behavior of spin valve structures using Mo(MoN) layers as underlayers were studied varying the thickness of the underlayers. The spin valve structure was consisted of Si substrate/$SiO_2(2,000{\AA})/Mo(MoN)(t{\AA})/NiFe(21\;{\AA})/CoFe(28\;{\AA})/Cu(22\;{\AA})/CoFe(18\;{\AA})/IrMn(65\;{\AA})/Ta(25\;{\AA})$. Also, MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The resistivity of the MoN film increased as the $N_2$ gas flow rate was increased. After annealing at $600^{\circ}C$, XRD results did not show peaks of silicides. XPS results indicated MoN film deposited with 5 sccm of $N_2$ gas flow rate was more stable than the film deposited with 1 sccm of $N_2$ gas flow rate. The variations of MR ratio and magnetic exchange coupling fold were small for the spin valve structures using Mo(MoN) underlayers up to thickness of45 ${\AA}$. MR ratio of spin valves using MoN underlayers deposited with various $N_2$ gas flow rate was about 7.0% at RT and increased to about 7.5% after annealing at $220^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased to about 3.5%. Variation of $N_2$ gas flow rate up to 5 sccm did not change the MR ratio and $H_{ex}$ appreciably.

Silicon trench etching using inductively coupled Cl2/O2 and Cl2/N2 plasmas

  • Kim, Hyeon-Soo;Lee, Young-Jun;Young, Yeom-Geun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.122-132
    • /
    • 1998
  • Characteristics of inductively coupled Cl2/O2 and Cl2/N2 plasmas and their effects on the formation of submicron deep trench etching of single crystal silicon have been investigated using Langmuir probe, quadrupole mass spectrometer (QMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), Also, when silicon is etched with oxygen added chlorine plasmas, etch products recombined with oxygen such as SiClxOy emerged and Si-O bondings were found on the etched silicon surface. However, when nitrogen is added to chlorine, no etch products recombined with nitrogen nor Si-N bondings were found on the etched silicon surface. When deep silicon trenches were teached, the characteristics of Cl2/O2 and Cl2/N2 plasmas changed the thickness of the sidewall residue (passivation layer) and the etch profile. Vertical deep submicron trench profiles having the aspect ratio higher than 5 could be obtained by controlling the thickness of the residue formed on the trench sidewall using Cl2(O2/N2) plasmas.

  • PDF

Structural and Magnetic Properties of Co2MnSi Heusler Alloy Films

  • Lim, W.C.;Okamura S.;Tezuka N.;Inomata K.;Bae, J.Y.;Kim, H.J.;Kim, T.W.;Lee, T.D.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.8-11
    • /
    • 2006
  • Recently half-metallic full-Heusler alloy films have attracted significant interests for spintronics devices. As these alloys have been known to have a high spin polarization, very large TMR ratio is expected in magnetic tunnel junctions. Among these alloys, $Co_2MnSi$ full-Heusler alloy with a high spin polarization and a high Curie temperature is considered a good candidate as an electrode material for spintronic devices. In this study, the magnetic and structural properties of $Co_2MnSi$ Heusler alloy films were investigated. TMR characteristics of magnetic tunnel junctions with a $Co_2MnSi/SiO_2/CoFe$ structure were studied. A maximum MR ratio of 39% with $SiO_2$ substrates and 27% with MgO(100) substrates were obtained. The lower MR ratio than expectation is considered due to off-stoichiometry and atomic disorder of $Co_2MnSi$ electrode together with oxidation of the electrode layer.

Preparation of SiO2/TiO2 Composite Fine Powder by Sol-Gel Process (Sol-Gel Process를 이용한 SiO2/TiO2 복합 미립자의 합성)

  • Koo, S.M.;Lee, D.H.;Ryu, C.S.;Lee, Y.E.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.301-307
    • /
    • 1997
  • Monodisperse, spherical $SiO_2/TiO_2$ composite fine powders were prepared by modified Sol-Gel process which $TiO_2$ fine Powders was used as a seed particles for condensation of TEOS (Tetraethyl Orthosilicate). The reaction was carried out under $N_2$ atmosphere at ambient temperature using $NH_3$ as a catalyst. Ethanol was used as a solvent. Drying process was carried out with vacuum trap which cooled by liquid $N_2$. The reaction variables were the concentration of TEOS, the concentration of ammonia, the size of $TiO_2$ seed and molar ratio of $SiO_2/TiO_2$. The optimum condition for the preparation of $SiO_2/TiO_2$ composite fine powders without agglomeration was [TEOS]=0.3M, [$NH_3$]=0.7M, size of $SiO_2/TiO_2$ seed = 200~300nm.

  • PDF

Hydrogenated a-Si TFT Using Ferroelectrics (비정질실리콘 박막 트랜지스터)

  • Hur Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.576-581
    • /
    • 2005
  • In this paper. the a-Si:H TFT using ferroelectric of $SrTiO_3$ as a gate insulator is fabricated on glass. High k gate dielectric is required for on-current, threshold voltage and breakdown characteristics of TFT Dielectric characteristics of ferroelectric are superior to $SiO_2$ and $Si_3N_4$. Ferroelectric increases on-current and decreases threshold voltage of TFT and also ran improve breakdown characteristics.$SrTiO_4$ thin film is deposited by e-beam evaporation. Deposited films are annealed for 1 hour in N2 ambient at $150^{\circ}C\~600^{\circ}C$. Dielectric constant of ferroelectric is about 60-100 and breakdown field is about IMV/cm. In this paper, the TFT using ferroelectric consisted of double layer gate insulator to minimize the leakage current. a-SiN:H, a-Si:H (n-type a-Si:H) are deposited onto $SrTiO_3$ film to make MFNS(Metal/ferroelectric/a-SiN:H/a-Si:H) by PECVD. In this paper, TFR using ferroelectric has channel length of$8~20{\mu}m$ and channel width of $80~200{\mu}m$. And it shows that drain current is $3.4{\mu}A$at 20 gate voltage, $I_{on}/I_{off}$ is a ratio of $10^5\~10^8,\;and\;V_{th}$ is$4\~5\;volts$, respectively. In the case of TFT without having ferroelectric, it indicates that the drain current is $1.5{\mu}A$ at 20gate voltage and $V_{th}$ is $5\~6$ volts. If properties of the ferroelectric thin film are improved, the performance of TFT using this ferroelectric thin film can be advanced.