Sol-Gel Process를 이용한 SiO2/TiO2 복합 미립자의 합성

Preparation of SiO2/TiO2 Composite Fine Powder by Sol-Gel Process

  • 구상만 (한양대학교 공업화학과) ;
  • 이동현 (한양대학교 공업화학과) ;
  • 류창석 (코리아나 화장품 연구소) ;
  • 이용은 (국립기술품질원 화학부 무기화학과)
  • Koo, S.M. (Dept. of Industrial Chemistry, Hanyang University) ;
  • Lee, D.H. (Dept. of Industrial Chemistry, Hanyang University) ;
  • Ryu, C.S. (Biochemistry team, R&D Center, Coreana Cosmetics) ;
  • Lee, Y.E. (Inorganic Division, National Institute of Technology and Quality)
  • 투고 : 1997.01.08
  • 심사 : 1997.03.11
  • 발행 : 1997.04.10

초록

응집이 없는 단분산의 $SiO_2/TiO_2$ 복합 미립자를 얻기 위하여 $TiO_2$seed가 분산되어 있는 에탄올 수용액과 TEOS (Tetraethyl Orthosilicate)를 에탄올에 녹인 용액을 혼합하여 $TiO_2$ 주위에서 TEOS가 가수분해 및 축합 반응이 일어나도록 유도하여 복합 미분말을 제조하였다. 촉매로 암모니아를 사용하였고, 반응온도는 실온이었다. 반응변수는 TEOS의 농도, 암모니아의 농도, $TiO_2$ seed의 크기 및 양이었다. 응집이 없는 복합 미립자를 얻기 위한 최적조건은 [TEOS]=0.3M, [$NH_4OH$]=0.7M, $TiO_2$ seed의 크기가 200~300 nm이었고, 이때 $0.8{\sim}0.9{\mu}m$의 입자크기를 갖는 복합입자를 얻을 수 있었다.

Monodisperse, spherical $SiO_2/TiO_2$ composite fine powders were prepared by modified Sol-Gel process which $TiO_2$ fine Powders was used as a seed particles for condensation of TEOS (Tetraethyl Orthosilicate). The reaction was carried out under $N_2$ atmosphere at ambient temperature using $NH_3$ as a catalyst. Ethanol was used as a solvent. Drying process was carried out with vacuum trap which cooled by liquid $N_2$. The reaction variables were the concentration of TEOS, the concentration of ammonia, the size of $TiO_2$ seed and molar ratio of $SiO_2/TiO_2$. The optimum condition for the preparation of $SiO_2/TiO_2$ composite fine powders without agglomeration was [TEOS]=0.3M, [$NH_3$]=0.7M, size of $SiO_2/TiO_2$ seed = 200~300nm.

키워드

과제정보

연구 과제 주관 기관 : 충남대학교, 한양대학교

참고문헌

  1. Sol-Gel Science C. J. Brinker;G. W. Scherer
  2. Chemical Processing of Advanced Materials Larry L. Hench;Jon. K. West
  3. The Chemistry of Silica R. K. Iler
  4. J. Coll. Interface Sci. v.26 W. Stober;A. Fink;E. Bohn
  5. Ceramic Processing and Sintering M. N. Rahaman
  6. J. Colloid and Interface Sci. v.118 C. G. Tan;B. D. Bowen;N. Epstein
  7. Chem. Rev. v.90 Larry L. Hench;Jon. K. West
  8. J. Am. Ceram. Soc. v.74 Takashi Ogihara;Hidenori Nakajima;Teruaki Yanagawa;NobouOgata;Kokichi Yoshida
  9. J. Am. Ceram. Soc. v.77 Qunyin Xu;Marc A. Anderson
  10. Colloids and Surfaces A. v.99 Ritva Linberg;Johan Sjoram;Goram Sundholm
  11. J. Non-Cryst. Solids v.104 G. H. Bogush;M. A. Tracy;C. F. Zukoski
  12. J. Collid Interface Sci. v.40 G. H. Bogush;C. F. Zukoski
  13. J. Non-Cryst. Solids v.63 S. Sakka;K. Kamiya;K. Makita;Y. Yamamoto
  14. J. Non-Cryst. Solids v.48 S. Sakka;K. Kamiya
  15. J. Collid Interface Sci. v.156 A. van Blaadern;A. Vrij
  16. J. Am. Ceram. Soc. v.76 Jackie Y. Ying;Jay B. Benziger
  17. J. Am. Ceram. Soc. v.76 Jackie Y. Ying;Jay B. Benziger
  18. J. Am. Ceram. Soc. v.77 Sang H. Hyun;Boem S. Kang
  19. J. Am. Ceram. Soc. v.76 Anne Bagley Hardy;WendellE. Rhine;H. Kent Bowen
  20. Material Letters v.24 Wei-Heng Shih;David Kisailus;Yen Wei
  21. J. Mater. Sci. v.21 B. E. Yoldas
  22. Langmuir v.2 J. H. Jean;T. A. Ring
  23. Communitication of the Am. Ceram. Soc. Eric A Barringer;H. Kent Bowen
  24. J. Am. Ceram. Soc. v.75 Jee Loon Look;Charles F. Zukoski
  25. J. Colloid and Interface Sci. v.81 A. K. Van Helden;J. W. Jansen;A. Vrij