• Title/Summary/Keyword: $SiO_2$ Buffer Layer

Search Result 165, Processing Time 0.029 seconds

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness (버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun;Lee, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Dependence of the Diode Characteristics of ZnO/b-ZnO/p-Si(111) on the Buffer Layer Thickness and Annealing Temperature (버퍼막 두께 및 버퍼막 열처리 온도에 따른 ZnO/b-ZnO/p-Si(111)의 전기적 특성 변화 및 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • In this study, the effects of ZnO buffer layer thickness and annealing temperature on the heterojunction diode, ZnO/b-ZnO/p-Si(111), were reported. The effects of those on the structural and electrical properties of zinc oxide (ZnO) films on ZnO buffered p-Si (111) substrate were also studied. Structural properties of ZnO thin films were studied by X-ray diffraction and I-V characteristics were measured by a semiconductor parameter analyzer. ZnO thin films with 70 nm thick buffer layer and annealing temperature of $700^{\circ}C$ showed the best c-axis preferred orientation. The best electrical property was found at the condition of buffer layer annealing temperature of $700^{\circ}C$ and 50nm thick ZnO buffer layer (resistivity: $2.58{\times}10^{-4}[{\Omega}-cm]$, carrier concentration: $1.16{\times}1020[cm^{-3}]$). The I-V characteristics for ZnO/b-ZnO/p-Si(111) heterojunction diode were improved with increasing buffer layer thickness at buffer layer annealing temperature of $700^{\circ}C$.

Role of Buffer Layer in Ba-Ferrite/α-Al2O3/SiO2 Magnetic Thin Films (Ba-페라이트/α-Al2O3/SiO2 자성박막에서 버퍼층의 역할)

  • Cho, Tae-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.283-286
    • /
    • 2006
  • We have studied the role of ${\alpha}-Al_{2}O_{3}$ buffer layer as a diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite $(1900-{\AA}-thick)/SiO_{2}$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_{2}O_{3}$ buffer layer ($110-{\AA}-thick$) in the interface of Ba-ferrite/$SiO_{2}$ thin film. During the annealing of Ba-ferrite/${\alpha}-Al_{2}O_{3}/SiO_{2}$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The magnetic properties, such as saturation magnetization and intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_{2}O_{3}$ buffer layer. Our study suggests that the ${\alpha}-Al_{2}O_{3}$ buffer layer act as a useful interfacial diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films.

Effect of SiO2 and Nb2O5 Buffer Layer on Optical Characteristics of ITO Thin Film

  • Kwon, Yong-Han;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2015
  • This paper presents the results of the optical characteristics of ITO thin film with different buffer layer thicknesses of $SiO_2$ and $Nb_2O_5$ for touch sensor application. $SiO_2$ and $Nb_2O_5$ buffer layers were deposited using RF magnetron sputtering equipment. The buffer layers were inserted between glass and ITO layers. In order to compare with the experimental results, the Essential Macleod Program (EMP) was adopted. Based on EMP simulation, the [$Nb_2O_5{\mid}SiO_2{\mid}ITO$] multi-layered thin film exhibited high transmittance of more than 85% in the visible region. The actual experimental results also showed transmittance of more than 85% in the visible region, indicating that the simulated results were well matched with the experimental results. The sheet resistance of ITO based film was about $340{\Omega}/sq$. The surface roughness maintained a relatively small value within the range of 0.1~0.4 nm when using the $Nb_2O_5$ and $SiO_2$ buffer layers.

The Effect of $ZrO_2-Y_2O_3\;(YSZ)$ Buffer Layer on Layer on Low-Field Magnetoresistance of LSMO Thin Films ($ZrO_2-Y_2O_3\;(YSZ)$ 중간층이 저 자장영역에서의 LSMO 박막의 자기저항 특성에 미치는 영향)

  • 심인보;오영제;최세영
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.306-311
    • /
    • 1999
  • $La_{2/3}Sr_{1/3}MnO_3(LSMO)/YSZ/SiO_2/Si(100)$ polycrystalline thin films were fabricated be chelated sol-gel method The effect of YSZ buffer layer at low field (120 Oe) spin-polarized tunneling magnetotransport (TMR) properties of LSMO thin film was studied at room temperature. Single perovskite LSMO thin films was obtained. The maximum TMR ratio was increased from 0.2 to 0.42 % by the insertion of YSZ buffer. YSZ as diffusion barrier was attributed to the fine microstructure of LSMO thin films and the reduction of dead layer between LSMO and $SiO_2/Si(100)$ interfaces.

  • PDF

Microstructure and Electrical Properties of the Pt/Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS) Using the PbO Buffer Layer (PbO 완충층을 이용한 Pt/Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS)의 미세구조와 전기적 특성)

  • Park, Chul-Ho;Song, Kyoung-Hwan;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.104-109
    • /
    • 2005
  • To study the role of PbO as the buffer layer, Pt/PZT/PbO/Si with the MFIS structure was deposited on the p-type (100) Si substrate by the r.f. magnetron sputtering with $Pb_{1.1}Zr_{0.53}Ti_{0.47}O_3$ and PbO targets. When PbO buffer layer was inserted between the PZT thin film and the Si substrate, the crystallization of the PZT thin films was considerably improved and the processing temperature was lowered. From the result of an X-ray Photoelectron Spectroscopy (XPS) depth profile result, we could confirm that the substrate temperature for the layer of PbO affects the chemical states of the interface between the PbO buffer layer and the Si substrate, which results in the inter-diffusion of Pb. The MFIS with the PbO buffer layer show the improved electric properties including the high memory window and low leakage current density. In particular, the maximum value of the memory window is 2.0V under the applied voltage of 9V for the Pt/PZT(200 nm, $400^{\circ}C)/PbO(80 nm)/Si$ structures with the PbO buffer layer deposited at the substrate temperature of $300^{\circ}C$.

Effect of Si3N4 Buffer Layer on Transmittance of TiO2/Si3N4/Ag/Si3N4/TiO2 Multi Layered Structure (TiO2/Si3N4/Ag/Si3N4/TiO2 다층구조에서 Si3N4 버퍼층이 투과율에 미치는 영향)

  • Lee, Seo-Hee;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ multi layered structure was designed for the possible application of transparent electrodes in PDP (Plasma Display Panel). Multi layered film was deposited on a glass substrate at room temperature by DC/RF magnetron sputtering system and EMP (Essential Macleod Program) was adopted to optimize the optical characteristics of film. During the deposition process, the Ag layer in $TiO_2/Ag/TiO_2$ became heavily oxidized and the filter characteristic was degraded easily. In thus study, Si3N4 layer was used as a diffusion buffer layer between $TiO_2$ and Ag. in order to prevent the oxidation of Ag layer in $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ structure. It was confirmed that $Si_3N_4$ layer is one of candidate materials acting as diffusin barrier between $TiO_2/Ag/TiO_2$.

Properties of IZTO Thin Films Deposited on PET Substrates with The SiO2 Buffer Layer

  • Park, Jong-Chan;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.72-76
    • /
    • 2015
  • 150-nm-thick In-Zn-Tin-Oxide (IZTO) films were deposited by RF magnetron sputtering after a 10 to 50-nm-thick $SiO_2$ buffer layer was deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) substrates. The electrical, structural, and optical properties of the IZTO/$SiO_2$/PET films were analyzed with respect to the thickness of the $SiO_2$ buffer layer. The mechanical properties were outstanding at a $SiO_2$ thickness of 50 nm, with a resistivity of $1.45{\times}10^{-3}{\Omega}-cm$, carrier concentration of $8.84{\times}10^{20}/cm^3$, hall mobility of $4.88cm^2/Vs$, and average IZTO surface roughness of 12.64 nm. Also, the transmittances were higher than 80%, and the structure of the IZTO films were amorphous, regardless of the $SiO_2$ thickness. These results indicate that these films are suitable for use as a transparent conductive oxide for transparency display devices.

Improvement of dielectric and interface properties of Al/CeO$_2$/Si capacitor by using the metal seed layer and $N_2$ plasma treatment (금속씨앗층과 $N_2$ 플라즈마 처리를 통한 Al/CeO$_2$/Si 커패시터의 유전 및 계면특성 개선)

  • 임동건;곽동주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.326-329
    • /
    • 2002
  • In this paper, we investigated a feasibility of cerium oxide(CeO$_2$) films as a buffer layer of MFIS(metal ferroelectric insulator semiconductor) type capacitor. CeO$_2$ layer were Prepared by two step process of a low temperature film growth and subsequent RTA (rapid thermal annealing) treatment. By app1ying an ultra thin Ce metal seed layer and N$_2$ Plasma treatment, dielectric and interface properties were improved. It means that unwanted SiO$_2$ layer generation was successfully suppressed at the interface between He buffer layer and Si substrate. The lowest lattice mismatch of CeO$_2$ film was as low as 1.76% and average surface roughness was less than 0.7 m. The Al/CeO$_2$/Si structure shows breakdown electric field of 1.2 MV/cm, dielectric constant of more than 15.1 and interface state densities as low as 1.84${\times}$10$\^$11/ cm$\^$-1/eV$\^$-1/. After N$_2$ plasma treatment, the leakage current was reduced with about 2-order.

  • PDF

The Effect of the Heat Treatment of the ZrO2 Buffer Layer and SBT Thin Film on Interfacial Conditions and Ferroelectric Properties of the SrBi2Ta2O9/ZrO2/Si Structure (ZrO2 완충층과 SBT 박막의 열처리 과정이 SrBi2Ta2O9/ZrO2/Si 구조의 계면 상태 및 강유전 특성에 미치는 영향)

  • Oh, Young-Hun;Park, Chul-Ho;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.624-630
    • /
    • 2005
  • To investigate the possibility of the $ZrO_2$ buffer layer as the insulator for the Metal-Ferroelectric-Insulator-semiconductor (MFIS) structure, $ZrO_2$ and $SrBi_2Ta_2O_9$ (SBT) thin films were deposited on the P-type Si(111) wafer by the R.F. magnetron-sputtering method. According to the process with and without the post-annealing of the $ZrO_2$ buffer layer and SBT thin film, the diffusion amount of Sr, Bi, Ta elements show slight difference through the Glow Discharge Spectrometer (GDS) analysis. From X-ray Photoelectron Spectroscopy (XPS) results, we could confirm that the post-annealing process affects the chemical binding condition of the interface between the $ZrO_2$ thin film and the Si substrate. Compared to the MFIS structure without the post-annealing of the $ZrO_2$ buffer layer, memory window value of MFlS structure with post-annealing of the $ZrO_2$ buffer layer were considerably improved. The window memory of the Pt/SBT (260 nm, $800^{\circ}C)/ZrO_2$ (20 nm) structure increases from 0.75 to 2.2 V under the applied voltage of 9 V after post-annealing.