• Title/Summary/Keyword: $SF_6$ Gas

Search Result 565, Processing Time 0.037 seconds

A study of the Insulation Characteristic in $SF_6-N_2$ Mixture Gases ($SF_6-N_2$ 혼합기체의 절연특성에 관한 연구)

  • Ha, Sung-Chul;Song, Byoung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.613-616
    • /
    • 2001
  • This SF6 gas is widely used in industrial of insulation field. In this paper, N2 is mixed to improve pure SF6 gas characteristics. Electron transport coefficients in SF6-N2 mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical EIN, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of SF6-N2 mixture gases.?⨀␍?܀㘱〮㜳㬓M敤楣楮攠慮搠桥污瑨

  • PDF

A study of the Insulation Characteristic in $SF_{6}$-$N_2$ Mixture Gases ($SF_{6}$-$N_2$ 혼합기체의 절연특성에 관한 연구)

  • 하성철;송병두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.613-616
    • /
    • 2001
  • This $SF_{6}$ gas is widely used in industrial of insulation field. In this paper, $N_2$ is mixed to improve pure $SF_{6}$ gas characteristics. Electron transport coefficients in $SF_{6}$-$N_2$ mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical E/N, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of $SF_{6}$-$N_2$ mixture gases.

  • PDF

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.

Recovery of $SF_6$ from Gas Mixtures with Low Concentration of $SF_6$ (저농도 $SF_6$ 기체혼합물로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2011
  • This study describes the performance of PSF and PC membranes for separation and recovery of $SF_6$ from gas mixtures (10% $SF_6$/70% $N_2$/19% $O_2$/1% $CF_4$) containing low concentration of $SF_6$. The $SF_6$ concentration in retentate, recovery efficiency and selectivity of mixed gases were measured as a function of retentate flow rate and temperature. The concentration of $SF_6$ in the gas recovered from PSF and PC membrane respectively decreased with increase of retentate flow rate and increased with increase of temperature. The values of $SF_6$ concentration in retentate of PSF membrane were higher than those of PC membrane at constant experimental conditions. The maximum value of recovery efficiency of PSF and PC membranes are 95.9% and 67.8%, respectively, under 298.15 K and 150 cc/min of retentate flow rate. With the exception of $CF_4/SF_6$, the real selectivities of $N_2/SF_6$ and $O_2/SF_6$ at PSF membrane were higher than those of PC membrane.

Performance Simulation of Natural Circulating Cooling System of SF6 Gas Charged Transformer (SF6 가스를 충전한 변압기의 자연순환 냉각시스템의 성능시뮬레이션)

  • Choi, Y.D.;Huh, C.S.;Kim, J.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.54-65
    • /
    • 1994
  • Performance of naturally circulating cooling system of $SF_6$ gas charged transformer was simulated and the variations of gas flow rate, maximum coil temperature, gas temperature and cooling air temperature were investigated with respect to the height of radiator, interplates distance and heat generation rate at core. The results show that the height of radiator most significantly affects the performance of natural circulating cooling system of transformer.

  • PDF

The Surface Flashover Characteristics of $SF_6$ with a variation of Temperature (온도저하에 따른 $SF_6$의 연면파괴특성)

  • Choi, Eun-Hyeok;Lee, Sang-Ho;Jang, Seung-Ho;Lim, Chang-Ho;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1398_1399
    • /
    • 2009
  • In this paper, insulations characteristics by temperature changes(+30~-40[$^{\circ}C$]) of $SF_6$ gas in the experimental chamber were studied. From this result, The breakdown characteristics classify the gas & liquid coexisted stage of voltage value increases & much deviation and the $V_B$ low stage as the interior of chamber gets filled with mixture of $SF_6$ that are not liquefacted and remain ing air which couldn't be ventilated. In addition the ability of insulation of liquid $SF_6$ was higher than that of the highly pressurized $SF_6$ gas. In this research, we want to provide the base data on designing insulation of high-temperature superconductor and the cryogenic equipments by investigating the insulation characteristics of $SF_6$.

  • PDF

Breakdown Characteristics of $SF_6/CF_4$ Mixtures under AC Voltages in Uniform, Nonuniform Field (평등, 불평등 전계에서 AC전압의 $SF_6/CF_4$ 혼합가스 절연내력 특성)

  • Sung, Heo-Gyung;Hwang, Cheong-Ho;Kim, Nam-Ryul;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1334-1335
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in uniform and nonuniform field was performed. The experiments were carried out under AC voltages. The sphere-sphere electrode whose gap distance was 1 mm was used and the point-plane electrode whose gap distance was 3 mm was used in a test chamber. $SF_6/CF_4$ mixture contained 20% $SF_6$ and 80% $CF_4$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The results show that addition of $SF_6/CF_4$ mixtures increase AC breakdown voltages. In uniform field the breakdown voltages of gas were linearly increased according to the pressure. However in nonuniform field the breakdown voltages of gas were increased nonlinearly.

  • PDF

Diffusion Coefficients in $SF_6-Ar$ Gas used by MCS-BE Algorithm (MCS-BEq 알고리즘에 의한 $SF_6-Ar$ 혼합기체의 확산계수)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.298-301
    • /
    • 2006
  • This paper describes the electron energy distribution function characteristics in $SF_6-Ar$ gas calculated for range of E/N values from $50\sim700[Td]$ by the Monte Carlo simulation(MCS) and Boltzmann equation(BE) method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by time of flight(TOF) method. In this dissertation the results of the combined experimental and theoretical studies designed to understand and predict the spatial growth and transport coefficients for electrons in $SF_6$ and $SF_6-Ar$ mixtures have described. The ionization and attachment coefficients in pure $SF_6$ and $SF_6-Ar$ mixtures have been calculated over the range of 10$SF_6$ molecule and for Ar atom proposed by other authors. The results obtained in this work will provide valuable information on the fundamental behaviors of electrons in weakly ionized gases and the role of electron attachment in the choice of better gases and unitary gas dielectrics or electro negative components in dielectric gas mixtures.

  • PDF

Trends and Characteristics in SF6 Emission Reduction Technology of Electrical Equipment (전력설비에서의 SF6 저감기술 동향 및 특성 분석)

  • Kim, Yeah-Won;Kim, Jeong-Man;Park, Sang-Hyuk;Lee, Moon-Gu
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.269-278
    • /
    • 2013
  • Sulfur hexafloride($SF_6$) emission to atmosphere is lower than $CO_2$, but $SF_6$ GWP is 22,800 times lager than $CO_2$. In recent years as restriction of $non-CO_2$ gas has been greatly reinforced, development of environment-friendly technology with $SF_6$ removal is becoming to main issue. This study shows that $SF_6$ used insulator electrical equipment has emission characteristics during the each phase(maintenance, use, diposal), and analyzed $SF_6$ emission reduction technology related phase. The major technology applies maintenance and disposal step is that improvment of gas recovery rate($85{\rightarrow}99%$), manufacturing catalysts, internal inspection of circuit breaker using endoscopy. Using those technolgies can reduce $SF_6$ emission in atmosphere.

Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사 막을 이용한 N2/SF6 혼합기체 분리에 관한 연구)

  • Kim, Dae-Hoon;Kim, Guang-Lim;Jo, Hang-Dae;Park, Jong-Soo;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.660-667
    • /
    • 2010
  • In this research polyimide, Matrimid 5218, hollow fiber membrane was used to recover sulfur hexafluoride($SF_6$) which is one of the six greenhouse gases from $N_2/SF_6$ mixture gas. Fibers were spun from using dry-wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a sponge-like substructure. The developed module had a permeance of 0.78-1.36 GPU for $N_2$ with $N_2/SF_6$ selectivity of 2.44-5.08 at various pressure and temperature. For recovery of $SF_6$, a membrane module and 10 vol.% $SF_6$ from $N_2/SF_6$ mixture gas was used. The effects of various operating condition such as pressure, temperature, and retentate side flow rate were tested. When pressure and temperature were increased and retentate flow rate was decreased, the $SF_6$ purity in recovered gas was increased up to 37.5 vol.% with decreasing recovery ratio. When retentate flow rate was increased pressure and temperature was decreased, the $SF_6$ recovery ratio in retentate side was increased up to 89% with decreasing the $SF_6$ purity in retentate side.