• Title/Summary/Keyword: $Pt/TiO_2$ Catalyst

Search Result 64, Processing Time 0.033 seconds

Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus (CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.708-715
    • /
    • 2017
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the improvement of $CH_4$ reduction ability of natural gas oxidation catalyst (NGOC), which reduces toxic gases emitted from CNG buses. Thirteen NGOCs were prepared, and the conversion performance of noxious gases according to the type of supports, the loading amount of noble metal, and surfactant and aging were determined. Support Zeolite supported on No. 3 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(46TiO_2+23Al_2O_3+23Zeolite)$ is an anionic alkali metal/earth metal component that improved the oxidation reactivity between CO and NO and noble metal dispersion, and thus enhanced the $CH_4$ reduction ability. As the loading amount of Pd, a noble metal with a high selectivity to $CH_4$, was increased, the number of reaction sites was increased and the ability to reduce $CH_4$ was improved. No. 11 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(Z20+Al80)$(pH=8.5), to which nitrate surfactant had been added, exhibited well dispersed catalyst particles with no agglomeration and improved the $CH_4$ reduction ability by 5-15%. The $NGOC(2Pt-2Pd-3Cr-3MgO/90Al_2O_3)$(48h aging), which was mildly thermal aged for 48h, increased the $CH_4$ reduction ability to about 10% or less as compared with No. 12 NGOC(Fresh).

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution

  • Kim, Do-Young;Lee, Young-Woo;Han, Sang-Beom;Ko, A-Ra;Kim, Hyun-Su;Kim, Si-Jin;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.

The Effect of $PtCl_4$ Concentration on Dye-Sensitized Solar Cell Efficiency ($PtCl_4$ 농도에 따른 염료감응형 태양전지의 효율 변화)

  • Seo, Hyun-Seung;Park, Mi-Ju;Choi, Eun-Chang;Lee, Sung-Uk;Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.435-436
    • /
    • 2008
  • Dye-sensitized Solar Cells(DSSCs) which convert incident sun light into electricity were expected to overcome global warming and depletion of fossil fuels. And it is one of study that is lately getting into the spotlight because manufacturing method is more simple and inexpensive than existing silicon solar cells. In this respect, DSSCs are in the limelight as the next generation solar cells. DSSCs are generally composed of a dye-modified $TiO_2$ photoelectrode, a Pt counter electrode, and an electrolytes containing a redox couple$(I^-/I_3^-)$. Among these elements, pt electrode were prepared by applying electric potential to FTO substrate in the $H_2PtCl_6$ solution. In this study, we report the solar cell efficiency depending on $PtCl_4$ concentration change. $PtCl_4$ concentration was 1mM, 5mM, 10mM, and 20mM, and adhered on FTO glass substrate by sintering process. When applied each $PtCl_4$ counter electrode on DSSC, the best efficiency was found at 10mM of $PtCl_4$ concentration. The catalyst promotes the movement of electron from the counter electrode to the electrolyte the higher the molarity, the better the efficiency. However, in case of 20mM, it is estimated that over-deposited $PtCl_4$ tends to restrict the movement of electron due to its bundle formation.

  • PDF

The Effect of $MnO_2$ Addition on the $V_2O_5/TiO_2$ Catalytic Filters for NO Reduction (NO 환원반응을 위한 $V_2O_5/TiO_2$계 촉매필터의 $MnO_2$ 조촉매 효과)

  • Shin, Hae-Joong;Choi, Jae-Ho;Song, Young-Hwan;Lee, Ju-Young;Jang, Sung-Cheol;Choi, Joo-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.363-368
    • /
    • 2008
  • Nitrogen oxides (NO, $NO_2$ and $N_2O$) have been controlled effectively by the SCR catalysts coated on monolith or honeycomb in commercial sites with ammonia as reductant at high temperature range $300{\sim}400^{\circ}C$. However, the catalytic filter has much merit on the point of controlling the particles and nitrogen oxides simultaneously. It will be more advanced-system if the catalytic working temperature is reduced to the normal filtration temperature of under $200^{\circ}C$. This study has focus on the development of the catalytic filter working at the low temperature. So the additive effect of the components such as Pt and Mn (which are known the catalytic component of $V_2O_5/TiO_2$ was investigated. The $V_2O_5-WO_3$ catalytic filter exhibited high activity and selectivity at $250{\sim}320^{\circ}C$ showing more than 95% NO conversion for the treatment of 600 ppm NO at face velocity 2 cm/s. The Pt-$V_2O_5-WO_3$ catalytic filter shifted the optimum working temperature towards the lower temperature ($170{\sim}200^{\circ}C$). And NO conversion was 100% and higher than that of $V_2O_5-WO_3$ catalyst at $250{\sim}320^{\circ}C$. The $MnO_X-V_2O_5-WO_3$ catalytic filter showed the wide temperature range of $220{\sim}330^{\circ}C$ for more than 95% NO conversion. This is a remarkable advantage when considered the $MnO_X$ catalytic filter presents the maximum activity at $150{\sim}250^{\circ}C$ and $V_2O_5-WO_3$ catalytic filter shows the maximum activity at $250{\sim}320^{\circ}C$.

  • PDF

A Study on the Reaction Characteristics of the HCHO Oxidation Using Nobel Metal Catalysts at Room Temperature (귀금속계 촉매를 이용한 HCHO 상온 산화 반응특성 연구)

  • Kim, Geo Jong;Seo, Phil Won;Kang, Youn Suk;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 2014
  • In this study, we investigated the noble metal catalysts for HCHO removal at room temperature. These catalysts were characterized by XRD, FT-IR, CO-chemisorption. As a result, Pt and Pd based catalysts prepared by the reduction treatment showed the superior HCHO oxidation ability at room temperature. When the catalysts were prepared using $TiO_2$ support, which is well known as the reducing support, showed the superior activity. Also, the activity decreased by the agglomeration of active metal with increasing the reduction time. In case of reduction catalysts, it has been confirmed that the desorption and adsorption ability properties of HCHO is excellent at room temperature.

A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism (전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구)

  • Park, Jun-Young;Kim, Ji-Hyun;Park, Ka-Young;Wachsman, Eric D.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.92-96
    • /
    • 2010
  • Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.

Oxygen-deficient Reduced TiO2-X: Surface Properties and Photocatalytic Activity

  • Sinhamahapatra, Apurba;Jeon, Jong-Pil;Yu, Jong-Sung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.59-75
    • /
    • 2016
  • Reduced or black $TiO_{2-x}$ materials with oxygen-deficiency have been achieved by creating oxygen vacancies and/or defects at the surface using different methods. Fascinatingly, they exhibited an extended absorption in VIS and IR instead of only UV light with bandgap decrease from 3.2 (anatase) to ~1 eV. However, despite the dramatic enhancement of optical absorption in black $TiO_{2-x}$ materials, they have failed to show expected visible light-assisted water splitting efficiency. This was ascribed to the high concentration of the surface defects and/or oxygen vacancies, considered as an electron donor to enhance donor density and improve the charge transportation in black $TiO_2$ can also act as charge recombination centers, which eventually decrease photocatalytic activity. Therefore, a black ot reducd $TiO_2$ material with optimized properties would be highly desired for visible light photocatalysis. In this report, a new controlled magnesiothermic reduction has been developed to synthesize reduced black $TiO_{2-x}$ in the presence $H_2/Ar$ for photocatalytic $H_2$ production from methanol-water system. The material possesses an optimum band gap and band position, oxygen vacancies, and surface defects and shows significantly improved optical absorption in the visible and infrared region. The synergistic effects enable the reduced $TiO_{2-x}$ material to show an excellent hydrogen production ability along with long-term stability under the full solar wavelength range of light and visible light, respectively, in the methanol-water system in the presence of Pt as a co-catalyst. These values are superior to those of previously reported black $TiO_2$ materials. On the basis of all the results, it can be realized that the outstanding activity and stability of the reduced of $TiO_{2-x}$ NPs suggest that a balanced combination of different factors like $Ti^{3+}$, surface defects, oxygen vacancy, and recombination center is achieved along with optimized bandgap and band position during the preparation employing magnesiothermic reduction in the presence of $H_2$. The controlled magnesiothermic reduction in the presence of $H_2$ is one of the best alternative ways to produce active and stable $TiO_2-based$ photocatalyst for $H_2$ production.

  • PDF

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.