• Title/Summary/Keyword: $PGE_1$

Search Result 862, Processing Time 0.026 seconds

Synthesis and Antiinflammatory Activity of 1,5-Diarylimidazoles

  • Tuyen Truong Ngoc;Sin Kwang-Seog;Kim Hyun Pyo;Park Haeil
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1013-1018
    • /
    • 2005
  • A number of 1,5-diarylimidazoles has been synthesized and evaluated for their inhibitory activities of COX-2 catalyzed $PGE_2$ production. 1,5-Diarylimidazoles were obtained from imimes and p-toluenesulfonylmethyl cyanide (TosMIC). Imines were prepared from commercially available amines and aldehydes. Among the compounds tested, 1-(2,4-difluorophenyl)-5-(4­methylsulfonylphenyl)imidazole (2r) showed strong inhibitory activity, however, most diarylimidazoles exhibited little to low inhibitory activities against COX-2 catalyzed $PGE_2$ production.

Inhibitory Activities of 1,5-Diarylimidazole Derivatives with Methylthiophenyl Group against PGE2 Production (메틸싸이오페닐기 함유 1,5-다이아릴 이미다졸 유도체의 프로스타글란딘 생성 억제작용)

  • Kwon, Jae-Hyun;Park, Haeil;Kim, Sung-Soo
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.107-111
    • /
    • 2016
  • Inhibitory activities of 1,5-diarylimidazole analogs with methylthiophenyl group on prostaglandin $E_2$ ($PGE_2$) production from LPS-treated RAW 264.7 cells, were evaluated and compared with those of the corresponding analogs with 4-methanesulfonylphenyl group. Among the tested nineteen analogs with methylthiophenyl group, fourteen analogs showed strong inhibitory activities (>88%) when compared with the reference compound NS-398, and fifteen analogs have similar inhibitory activities with those of parent analogs with 4-methanesulfonylphenyl group. Those results suggest that most of 1,5-diarylimidazole analogs with methanesulfonylphenyl group can be also active even after they are metabolized by reduction.

Study on IL -8 Expression in Peripheral Blood Monocytes (말초 혈액 단핵구에서 IL-8 발현에 관한 연구)

  • Kim, Jae-Yeol;Lee, Jae-Cheol;Kang, Min-Jong;Park, Jae-Seok;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Jae-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.703-712
    • /
    • 1995
  • Background: Peripheral blood monocytes are important immune effector cells that play a fundamental role in cellular immunity. In addition to their antigen-presenting and phagocytic activities, monocytes/macrophage produce a vast array of regulatory and chemotactic cytokines. Interleukin-8(IL-8), a potent neutrophil-activating and chemotactic peptide, is produced in large quantities by mononuclear phagocytes and may be an important mediator of local and systemic inflammation. Overexpression by IL-8 of such inflammation may be an important step of tissue injury frequently seen in inflammatory reaction. So it could be hypothesized that the agents which block the production of IL-8 can decrease the inflammatory reaction and tissue injury. To evaluate this, we described the effect of Dexamethasone, $PGE_2$, Indomethacin and Interferon-$\gamma$(IFN-$\gamma$) on IL-8 mRNA and protein expression from LPS-stimulated human peripheral blood monocytes(PBMC). Method: PBMC was isolated from healthy volunteers. To evaluate the effect of Dexamethasone, $PGE_2$ & Indomethacin, these drug were treated for 1 hour before and after LPS stimulation and IFN-$\gamma$ was only treated I hour before the LPS stimulation. Northern blot analysis for IL-8 mRNA and ELISA for immunoreactive IL-8 protein in culture supernatant were performed. We repeated above experiment three times for Northern blot analysis and two times for ELISA and got the same result. Results: 1) Pre- and post-treatment of Dexamethasone suppressed both the LPS stimulated IL-8 mRNA expression and IL-8 protein release in PBMC. 2) IFN-$\gamma$ pre-treatment suppressed the IL-8 mRNA expression and IL-8 protein release in unstimulated cells. 3) In LPS stimulated cells, IFN-$\gamma$ suppressed the IL-8 mRNA expression but IL-8 protein release suppression was not observed. 4) $PGE_2$ and Indomethacin exert no effect on the LPS-stimulated IL-8 mRNA and protein expression in concentration used in this experiment ($PGE_2;10^{-6}M$, Indomethacin; $10{\mu}M$). Conclusion: One of the mechanism of antiinflammatory action of Dexamethasone can be explained by the suppressing effect of IL-8 production in some extent and by this antiinflammatory effect, dexamethasone can be used to suppress local and systemic inflammation mediated by IL-8.

  • PDF

Anti-inflammatory Effects of Hemistepta lyrata Bunge in LPS-stimulated RAW 264.7 Cells through Regulation of MAPK Signaling Pathway (LPS로 유도된 RAW 264.7 대식세포의 염증반응에서 MAPK 신호경로 조절을 통한 지칭개 에탄올 추출물의 항염증 효과)

  • Kim, Chul Hwan;Lee, Young-Kyung;Jeong, Jin-Woo;Hwang, Buyng Su;Jeong, Yong Tae;Oh, Yong Taek;Cho, Pyo Yun;Kang, Chang-Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Hemistepta lyrata Bunge (HL) has been used as a folk remedy to treat cancer, inflammation, bleeding, hemorrhoids and fever, and leaves and young shoots have been used as famine food. Nevertheless, the biological activities and underlying mechanisms of the anti-inflammatory effects remain unclear. In this study, it was undertaken to explore the functions of the aerial part of HL as a suppressor of inflammation by using RAW 264.7 cells. As immune response parameters, the productions of as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines such tumor necrotic factor (TNF)-α and interleukin (IL)-6 were evaluated. Although the release of TNF-α remained unchanged in HL-treated RAW 264.7 cells, the productions of NO, PGE2 and IL-6 were significantly increased at concentrations with no cytotoxicity. Furthermore, HL significantly attenuated the mitogen-activated protein kinases (MAPK) pathway including decreasing the phosphorylation of the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases. Collectively, this study provides evidence that HL inhibits the production of major pro-inflammatory molecules in LPS-stimulated RAW 264.7 cells via suppression of ERK and P38 MAPK signaling pathways. These findings suggest that the beneficial therapeutic effects of HL may be attributed partly to its ability to modulate immune functions in macrophages.

Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii

  • Kim Ji-Young;Ahn Myoung-Hee;Song Hyun-Ouk;Choi Jong-Hak;Ryu Jae-Sook;Min Duk-Young;Cho Myung-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.197-207
    • /
    • 2006
  • This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and $MIP-1\alpha$, and enzyme, COX-2/prostaglandin $E_2(PGE_2)$ in infected cells via western blot, $[^3H]-uracil$ incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. $MIP-1\alpha$ mRNA was increased in macrophages at 18 hr PI. MCP-1 and $MIP-1\alpha$ were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. $PGE_2$ from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, $MIP-1\alpha$, COX-2 and $PGE_2$ were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.

Effect of Dietary β-1,3/1,6-glucan Supplementation on Growth Performance, Immune Response and Plasma Prostaglandin E2, Growth Hormone and Ghrelin in Weanling Piglets

  • Wang, Zhong;Guo, Yuming;Yuan, Jianmin;Zhang, Bingkun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.707-714
    • /
    • 2008
  • The experiment was conducted to evaluate the effect of ${\beta}$-1,3/1,6-glucan on growth performance, immunity and endocrine responses of weanling piglets. One hundred and eighty weanling piglets (Landrace$\times$Large White, $7.20{\pm}0.25kg$ BW and $28{\pm}2$ d of age) were randomly fed 1 of 5 treatment diets containing dietary ${\beta}$-1,3/1,6-glucan supplemented at 0, 25, 50, 100 and 200 mg/kg for 4 wks. Each treatment was replicated in 6 pens containing 6 pigs per pen. On d 14 and 28, body weight gain, feed consumption and feed efficiency were recorded as measures of growth performance. Peripheral blood lymphocyte proliferation and serum immunoglobulin G (IgG) were measured to study the effect of dietary ${\beta}$-1,3/1,6-glucan supplementation on immune function. Plasma prostaglandin E2 (PGE2), growth hormone (GH) and ghrelin were measured to investigate endocrine response to ${\beta}$-1,3/1,6-glucan supplementation. Our results suggest that average daily gain (ADG) and feed efficiency had a quadratic increase trend with dietary ${\beta}$-1,3/1,6-glucan supplementation from d 14 to 28, whereas it had no significant effect on average daily feed intake (ADFI). The treatment group fed with 50 mg/kg dietary ${\beta}$-1,3/1,6-glucan supplementation showed a numerical increase in ghrelin, a similar change trend with ADG and no significant effect on GH. Lymphocyte proliferation indices, serum IgG and plasma PGE2 concentrations varied linearly with dietary supplementation levels of ${\beta}$-1,3/1,6-glucan on d 14. Higher levels of ${\beta}$-1,3/1,6-glucan may have a transient immuno-enhancing effect on the cellular and humoral immune function of weanling piglets via decreased PGE2. Taking into account both immune response and growth performance, the most suitable dietary supplementation level of ${\beta}$-1,3/1,6-glucan is 50 mg/kg for weanling piglets.

Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala

  • Choi, Jong Hee;Lee, Min Jung;Jang, Minhee;Kim, Hak-Jae;Lee, Sanghyun;Lee, Sang Won;Kim, Young Ock;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and $N_{\omega}$-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.

In vitro Anti-inflammatory Activity of the Artemisia fukudo Extracts in Murine Macrophage RAW 264.7 Cells (큰비쑥(Artemisia fukudo) 추출물의 murine macrophage RAW 264.7 세포에서 in vitro 항염효과)

  • Yoon, Weon-Jong;Lee, Jung-A;Kim, Kil-Nam;Kim, Ji-Young;Park, Soo-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.464-469
    • /
    • 2007
  • The present study describes the preliminary evaluation of the anti-inflammatory activities of Artemisia fukudo extracts. The 80% ethanol extract of A. fukudo was sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and butanol. In order to effectively screen for anti-inflammatory agents, we first examined the extracts’ inhibitory effects on the production of pro-inflammatory cytokines activated with lipopolysaccharide. Moreover, we examined the inhibitory effects of the A. fukudo extracts on pro-inflammatory factors (NO, iNOS, COX-2, and $PGE_{2}$) in murine macrophage RAW 264.7 cells. The protein levels were determined by immunoblotting. Of the sequential solvent fractions, the n-hexane and dichloromethane fractions inhibited the mRNA expression of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), production of NO and $PGE_{2}$, and the protein levels of iNOS and COX-2. These results suggest that A. fukudo may have signifIcant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic plant.

GROWTH INHIBITION OF ORAL SQUAMOUS CELL CARCINORMA CELL LINE INDUCED BY COX INHIBITOR (COX 억제제에 의해 유도되는 구강편평세포암종 세포주의 성장 억제 효과)

  • Park, Gwang-Jin;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.333-344
    • /
    • 2008
  • The objectives of this study was to explore the growth pattern of the oral squamous cell carcinoma when overexpressed COX was inhibited, explore the pathway that COX inhibitors suppressed the proliferation of cancer cells, and then hereafter investigate the potential of COX as chemopreventive target for oral squamous cell carcinoma. For confirming the COX-dependent effect and mechanisms on growth of the oral cancer cells, we treated the nonselective NSAID, Mefenamic acid and COX-2 selective inhibitor, Celecoxib in HN4 cell line. And then the cell line was evaluated with MTT assay and growth curve, the production of PGE2, total RNA extraction and RT-PCR analysis, and TEM The results were obtained as follows: 1. After administration of medication, in the result of MTT assay, Celecoxib inoculated group inhibit the cell growth rather than Mefenamic acid inoculated group. 2. The growth curve of cell line showed as time passes by there was a dramatic cell growth in the control group, and gradual growth inhibition was found in medication inoculated group and, in Celecoxib inoculated group there was more inhibition of cell growth. 3. After the administration of medication, Celecoxib tend to inhibit the synthesis of PGE2 more than Mefenamic acid. Mefenamic acid inhibit the synthesis of PGE2 more as the concentration gets high, but Celecoxib inhibited the synthesis of PGE2 even in low concentration. 4. After the administration of medication, the revelation of COX mRNA in cell line, there was a 50% decrease in COX-1, 60% decrease in COX-2 as in $50{\mu}M$ Mefenamic acid, and in Celecoxib $50{\mu}M$ there was not much difference in COX-1 and 90% decrease in COX-2 was found. 5. HN4 cell line showed broken nucleus and tangled cytoskeleton bundles in cytoplasm which meant apoptotic features after the treatment of Celecoxib in TEM view. Depending on the above results, we estimate that the inhibition of the expression of COX-2 cause the growth suppression of the oral squamous cell carcinoma, and it get achieved through pathway of reduced PGE2 production and increased apoptosis. In addition to, because COX-2 selective inhibitor specifically act to COX-2, it is considered that COX-2 selective inhibitor has the adequate potential as chemopreventive agent for oral squamous cell carcinoma.