• Title/Summary/Keyword: $O_2$ plasma

Search Result 2,605, Processing Time 0.032 seconds

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries (리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석)

  • Sun, Ho-Jung;Lee, Jae-Ho;Jeong, Hyun-Young;Seok, Dong-Chan;Jung, Yongho;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.160-171
    • /
    • 2013
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

grid를 이용한 plasma parameter control

  • 배근희;김성식;홍정인;장홍영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.181-181
    • /
    • 2000
  • 최근 반도체 공정에 있어 0.2$\mu\textrm{m}$ 이하의 미세 공정에 필요해짐에 따라 plasma를 이용한 공정이 필요하게 되었다. 그러나 ICP를 이용하여 SiO2를 etching 할 경우, SiO2/Si 선택비를 높이기 우해 전자 온도 제어가 필요하다. grid를 이용하여 전자 온도를 제어할 경우 plasma potential이 plasma 변수 제어에 중요한 역할을 하게 된다. 이번 실험에서는 grid를 이용하여 plasma potential를 변화시켜 주면서 생기는 플라즈마 변수 변화에 대해 연구하였다.

  • PDF

Characteristic Analysis of ITO by Variation of Plasma Condition to Fabricate OLED of High Efficiency (고효율 OLED 제작을 위한 플라즈마 조건 변화에 따른 ITO 특성 분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • This paper aims to analyze the characteristics of ITO which are caused by variation of plasma condition to fabricate the OLED of high efficiency. We treated $N_2$ gas and $O_2$ gas plasma on the surface of the ITO by changing their RF plasma power into 100 W, 200 W, 400 W and by changing their 9as pressure into 12 mTorr, 120 mTorr. The work function of ITO that plasma treatment was done by using $N_2$ gas had value of $4.88{\sim}5.07\;eV$, and that by using $O_2$ gas, $4.85{\sim}4.97 eV$. The characteristics of the ITO were most efficient in the $N_2$ gas plasma with the RF power of 200W and gas pressure of 120 mTorr. The rms roughness of ITO surface is the value from AFM image. In this case, ITO obtained $25.2\;{\AA}$ and $30.5\;{\AA}$ in the $N_2$ and $O_2$ gas plasma respectively when it had the RF power of 200 W. But ITO that didn't have plasma treatment was $44.5{\AA}$. The variation of ITO transmittance was almost not discovered by the change of $N_2$ gas and $O_2$ gas pressure.

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma (Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구)

  • Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.747-751
    • /
    • 2010
  • In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Study on Etching Damages of YMnO3 Thin Films by Cl-based Plasma (Cl-based 플라즈마에 의한 YMnO3 박막의 식각 damage에 관한 연구)

  • 박재화;기경태;김동표;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.449-453
    • /
    • 2003
  • Ferroelectric YMnO$_3$ thin films were etched with Ar/Cl$_2$ and CF$_4$/Cl$_2$ inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ thin film was 300 $\AA$/min at a Ar/Cl$_2$ gas mixing ratio of 2/8, a RF power of 800 W, a DE bias of 200 V, a chamber pressure of 15 mTorr, and a substrate temperature of 30 $^{\circ}C$. From the X-ray photoelectron spectroscopy (XPS) analysis, yttrium etched by chemical reactions with Cl radicals assisted by Ar ion bombardments in Ar/Cl$_2$ plasma. In CF$_4$/Cl$_2$ plasma, yttrium are remained on the etched surface of YMnO$_3$ and formed of nonvolatile YF$_{x}$ compounds manganese etched effectively by chemical reactions with Cl and F radicals. From the X-ray diffraction (XRD) analysis, the (0004) diffraction peak intensity of the YMnO$_3$ thin film etched in Ar/Cl$_2$ plasma shows lower value than that in CF$_4$/Cl$_2$ plasma. It indicates that the crystallinty of YMnO$_3$ thin film is more easily damaged by the Ar ion bombardment than the changes of stoichiometry due to nonvolatile etch by-products.s.

The Comparison of Property and Visible Light Activity between Bulk and Surface Doped N-TiO2 Prepared by Sol-gel and N2-plasma Treatment

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.199-203
    • /
    • 2012
  • A modified sol-gel method and $N_2$-plasma treatment were used to prepare bulk and surface doped N-$TiO_2$, respectively. XRD, TEM, UV-vis spectroscopy, $N_2$ adsorption, Elemental Analyzer, Photoluminescence, and XP spectra were used to characterize the prepared $TiO_2$ samples. The N doping did not change the phase composition and particle sizes of $TiO_2$ samples, but increased the visible light absorption. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activity of surface doped N-$TiO_2$ prepared by $N_2$-plasma was much higher than that of bulk doped N-$TiO_2$ prepared by sol-gel method. The possible mechanism for the photocatalysis was proposed.

The Effect of Porosity Sealing by Sol-gel Method on Physical and Electrical )Properties of a Plasma Sprayed $Ce_0.8Gd_0.2O_2$ Electrolyte (졸-겔법에 의한 기공 충전이 플라즈마 용사된 $Ce_0.8Gd_0.2O_2$ 전해질체의 물리 및 전기적 성질에 미치는 영향)

  • 유석원;김장엽;김호무;김병호;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1205-1210
    • /
    • 1999
  • Ceria based electrolytes were fabricated by a plasma spraying method. The porosity which was crated during the plasma spraying process was infiltrated with Ce0.8Gd0.2O2 sol by ultrasonic treatment and heat treatment at 90$0^{\circ}C$ in order to improve physical and electrical properties. The porosity decreased from 9.8% to 6.5% and gas permeability at 80$0^{\circ}C$ decreased from 16.7$\times$10-3 to 5.7$\times$10-3 cm3(STP)/cm2.s.cmHg as the number of treatment increased 10 cycles. The ionic conductivity was also increased about 30% after 10 times of sealing.

  • PDF

A Study on Etching Characteristics of SnO2 Thin Films Using High Density Plasma (고밀도 플라즈마를 이용한 SnO2 박막의 건식 식각 특성)

  • Kim, Hwan-Jun;Joo, Young-Hee;Kim, Seung-Han;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.826-830
    • /
    • 2013
  • In this paper, we carried out the investigations of both etch characteristics and mechanisms for the $SnO_2$ thin films in $O_2/BCl_3/Ar$ plasma. The dry etching characteristics of the $SnO_2$ thin films was studied by varying the $O_2/BCl_3/Ar$ gas mixing ratio. We determined the optimized process conditions that were as follows: a RF power of 700 W, a DC-bias voltage of - 150 V, and a process pressure of 2 Pa. The maximum etch rate was 509.9 nm/min in $O_2/BCl_3/Ar$=(3:4:16 sccm) plasma. From XPS analysis, the etch mechanism of the $SnO_2$ thin films in the $O_2/BCl_3/Ar$ plasma can be identified as the ion-assisted chemical reaction while the role of ion bombardment includes the destruction of the metal-oxide bonds as well as the cleaning of the etched surface form the reaction products.

The Etching Characteristics of $TiO_2$ ThinFilms Using the Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 $TiO_2$ 박막의 식각 특성)

  • Joo, Young-Hee;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.385-385
    • /
    • 2010
  • In this work, we have investigated the etching characteristics of $TiO_2$ and selectivity of $TiO_2$ over $SiO_2$ thin films as resistance in ReRAM using the inductively coupled plasma. The etch rate and selectivity were measured by varying the $BCl_3$ addition into Ar plasma. The maximum etchrate was obtained at 110.1nm/min at $BCl_3$/Ar=5sccm/10sccm, 500W for RFpower, -100v for DC-bias voltage, and 2Pa for the process pressure. The etched $TiO_2$ surface was investigated with X-ray photo electron spectroscopy. We explained the etching mechanism in two etch mechanisms, physiclas puttering and chemical reaction.

  • PDF