• Title/Summary/Keyword: $O_2$ partial pressure

Search Result 488, Processing Time 0.029 seconds

Hydrogen Production by the Photocatalystic Effects in the Microwave Water Plasma

  • Jang, Soo-Ouk;Kim, Dae-Woon;Koo, Min;Yoo, Hyun-Jong;Lee, Bong-Ju;Kwon, Seung-Ku;Jung, Yong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.284-284
    • /
    • 2010
  • Currently, hydrogen has been produced by Steam Reforming or partial oxidation reforming processes mainly from oil, coal, and natural gas and results in the production of $CO_2$. However, these are influenced greatly on the green house effect of the earth. so it is important to find the new way to produce hydrogen utilizing water without producing any environmentally harmful by-products. In our research, we use microwave water plasma and photocatalyst to improve dissociation rate of water. At low pressure plasma, electron have high energy but density is low, so temperature of reactor is low. This may cause of recombination in the generated hydrogen and oxygen from splitting water. If it want to high dissociation rate of water, it is necessary to control of recombination of the hydrogen and oxygen using photocatalyst. We utilize the photocatalytic material($TiO_2$, ZnO) coated plasma reactor to use UV in the plasma. The quantity of hydrogen generated was measured by a Residual Gas Analyzer.

  • PDF

Investigation of Effective Contact Resistance of ZTO-Based Thin Film Transistors

  • Gang, Yu-Jin;Han, Dong-Seok;Park, Jae-Hyeong;Mun, Dae-Yong;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.543-543
    • /
    • 2013
  • Thin-film transistors (TFTs) based on oxide semiconductors have been regarded as promising alternatives for conventional amorphous and polycrystalline silicon TFTs. Oxide TFTs have several advantages, such as low temperature processing, transparency and high field-effect mobility. Lots of oxide semiconductors for example ZnO, SnO2, In2O3, InZnO, ZnSnO, and InGaZnO etc. have been researched. Particularly, zinc-tin oxide (ZTO) is suitable for channel layer of oxide TFTs having a high mobility that Sn in ZTO can improve the carrier transport by overlapping orbital. However, some issues related to the ZTO TFT electrical performance still remain to be resolved, such as obtaining good electrical contact between source/drain (S/D) electrodes and active channel layer. In this study, the bottom-gate type ZTO TFTs with staggered structure were prepared. Thin films of ZTO (40 nm thick) were deposited by DC magnetron sputtering and performed at room temperature in an Ar atmosphere with an oxygen partial pressure of 10%. After annealing the thin films of ZTO at $400^{\circ}C$ or an hour, Cu, Mo, ITO and Ti electrodes were used for the S/D electrodes. Cu, Mo, ITO and Ti (200 nm thick) were also deposited by DC magnetron sputtering at room temperature. The channel layer and S/D electrodes were defined using a lift-off process which resulted in a fixed width W of 100 ${\mu}m$ and channel length L varied from 10 to 50 ${\mu}m$. The TFT source/drain series resistance, the intrinsic mobility (${\mu}i$), and intrinsic threshold voltage (Vi) were extracted by transmission line method (TLM) using a series of TFTs with different channel lengths. And the performances of ZTO TFTs were measured by using HP 4145B semiconductor analyzer. The results showed that the Cu S/D electrodes had a high intrinsic field effect mobility and a low effective contact resistance compared to other electrodes such as Mo, ITO and Ti.

  • PDF

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.

Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution (HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향)

  • KIM, JONGSEOK;PARK, CHUSIK;KANG, KYOUNGSOO;JEONG, SEONGUK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.

Phase Transformation and Misconstruct of REBa2Cu3O7-x (RE=Nd, Gd, Dy) Superconductor during Heat treatment (REBa2Cu3O7-x (RE=Nd, Gd, Dy) 초전도체의 열처리에 따른 상변태와 미세구조)

  • 오용택;한용희;한병성;한상철;성태현;홍광준;신동찬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1278-1285
    • /
    • 2003
  • This study investigated the phase transformation of the REBa$_2$Cu$_3$$O_{7-x}$ (RE=Nd, Gd, Dy) superconductor, and CCT (Continuous-Cooling-Transformation) along with the TTT (Time-Temperature-Transformation) diagrams are suggested according to the isothermal and continuous cooling heat-treatments. The peritectic temperature of the 123 phases decreased approximately 3$0^{\circ}C$ when the ionic radius of the rare-earth elements was reduced. The optimum cooling rate where BC and Cu-free phases do not exist was 0.001$^{\circ}C$/s. At this cooling late, the 123 phase grew with a c-axis Perpendicular to the surface and had a well-distributed 211 phase. When the oxygen partial pressure was reduced Outing isothermal heat-treatment, the formation temperature of the 211 phase decreased. In addition, the formation temperature of the 123 phases decreased from 100$0^{\circ}C$ (Nd-123) to 9$25^{\circ}C$ (Gd-123), and finally 875$^{\circ}C$ (Dy-123) according to the decrease in the ionic radius of the tare-earth elements. Compared to Nd-123, Gd- and Dy-123 had a better texture with a well-distributed 211 phase.e.

The effect of deposition temperature/pressure on the superconducting properties of YBCO coated conductor (YBCO coated conductor의 초전도 특성에 미치는 박막 증착 온도/압력의 영향)

  • Park, Chan;Ko, Rok-Kil;Chung, Jun-Ki;Choi, Soo-Jeong;Song, Kyu-Jeong;Park, Yu-Mi;Shin, Ki-Chul;Shi, Dongqi;Yoo, Sang-Im
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.30-33
    • /
    • 2003
  • YBCO coated conductor, also called the 2nd generation high temperature superconducting wire, consists of oxide multi-layer hetero-epitaxial thin films. Pulsed laser deposition (PLD) is one of many film deposition methods used to make coated conductor, and is the one known to be the best to make superconducting layer so far. As a part of the effort to make long length coated conductor, the optimum deposition condition of YBCO film on single crystal substrate (SrTiO3) was investigated using PLD. Substrate temperature, oxygen partial pressure, and laser fluence were varied to find the best combination to grow high quality YBCO film.

  • PDF

Study on metal-supported solid oxide fuel cells (신구조 금속지지체형 고체산화물 연료전지)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.129-132
    • /
    • 2007
  • Advanced structure of metal-supported solid oxide fuel cells was devised to overcome sealing problem and mechanical instability in ceramic-supported solid oxide fuel cells. STS430 whose dimensions were 26mm diameter, 1mm thickness and 0.4mm channel width was used as metal support. Thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support by using a cermet adhesive. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3}$ perovskite oxide was used as cathode material. It was noted that oxygen reduction reaction of cathode governed the overall cell performance from oxygen partial pressure dependance.

  • PDF

Field emission characteristics of carbon nanotubes under residual gases

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Choi, Young-Chul;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1539-1540
    • /
    • 2008
  • The field degradation of carbon nanotube field emitters in diode emission at constant current was demonstrated to be highly dependent upon the presence of residual gases at partial pressures. Upon exposure to a higher pressure of oxygen containing gases, for example, $O_2$ and CO increased the voltage. Those gases give rise to chemical etching to CNTs emitters. On the contrary, $CH_4$ affected the emission properties in the opposite direction as decreasing the voltage which was probably attributed to the introduction of adsorbate tunneling states. The mixed gas may cause a combined effect of both adsorbate tunneling states and CNT etching.

  • PDF

Electrical Characteristics of GaN Epi Layer on Sapphire Substrates for AIGaN/GaN Heterostructures (AIGaN/GaN 이종접합 디바이스를 위한 GaN 에피층의 전기적 특성)

  • 문도성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.591-596
    • /
    • 2002
  • In this work, epitaxial GaN is grown on sapphire substrate in AlGaN/GaN heterostructures. Deliberate oxygen doping of GaN grown by MOVPE has been studied. The electron concentration increased as a function of the square root of the oxygen partial Pressure. Oxygen is a shallow donor with a thermal ionization energy of $27\pm2 meV$ measured by temperature dependent Hall effects. A compensation ratio of $\theta$=0.3~0.4 was determined from Hall effect measurements. The formation energy of $O_N$ of $E^F$ =1.3eV determined from the experimental data, is lower than the theoretically predicted vague.

Effect of Metallic Tungsten Concentration on Resistance Switching Behavior of Sputtered W-doped NbOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Na, Hui-Do;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.288-288
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of W-doped NbOx films with increasing W doping concentration. The W-doped NbOx based ReRAM devices with a TiN/W-doped NbOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 50 nm thick W-doped NbOx films were deposited by reactive dc magnetron co-sputtering at $400^{\circ}C$ and oxygen partial pressure of 35%. Micro-structure of W-doped NbOx films and atomic concentration were investigated by XRD, TEM and XPS, respectively. The W-doped NbOx films showed set/reset resistance switching behavior at various W doping concentrations. The process voltage of set/reset is decreased and whereas the initial current level is increased with increasing W doping concentration in NbOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of metallic tungsten of oxygen of W-doped NbOx.

  • PDF