Browse > Article
http://dx.doi.org/10.22807/KJMP.2020.33.1.1

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations  

Kim, Yong-Hyun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
Yi, Yoo Soo (Division of Polar Paleoenvironment, Korea Polar Research Institute)
Lee, Sung Keun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.33, no.1, 2020 , pp. 1-10 More about this Journal
Abstract
The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.
Keywords
$SiO_2$ Polymorphs; Electronic structure; Quantum chemical calculation; X-ray Absorption spectroscopy; X-ray Raman scattering; WIEN2k;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khim, H., Yi, Y.S. and Lee, S.K., 2017, Core-hole effect on partial electronic density of state and O K-edge X-ray Raman scattering spectra of high-pressure $SiO_2$ phases. Journal of the Mineralogical Society of Korea, 30, 59-70.   DOI
2 Kim, Y.-H., Yi, Y.S., Kim, H.-I., Chow, P., Xiao, Y., Shen, G. and Lee, S. K., 2019, Structural transitions in $MgSiO_3$ glasses and melts at the core-mantle boundary observed via inelastic X-ray scattering. Geophysical Research Letters, 46, 13756-13764.   DOI
3 Kim, Y.-H., Yi, Y.S., Chow, P., Xiao, Y., Ji, C., Shen, G. and Lee, S.K., Densification of $SiO_2$ crystals and glasses at megabar pressures: Insights from Si $L_{2,3}$-edge X-ray Raman scattering. in preparation.
4 Kingma, K.J., Cohen, R.E., Hemley, R.J. and Mao, H.K., 1995, Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374, 243-245.   DOI
5 Kono, Y., Shibazaki, Y., Kenney-Benson, C., Wang, Y. and Shen, G., 2018, Pressure-induced structural change in $MgSiO_3$ glass at pressures near the Earth's core-mantle boundary. Proceedings of the National Academy of Sciences, 115, 1742-1747.   DOI
6 Lee, S.K., 2018, Amorphous oxides under extreme compression: Insights from solid-state nuclear magnetic resonance and inelastic X-ray scattering. Physics and High Technology, 27, 19-28.   DOI
7 Lee, S.K., Eng, P.J. and Mao, H.K., 2014, Probing of pressure- Induced bonding transitions in crystalline and amorphous Earth materials: Insights from X-ray Raman scattering at high pressure. In Spectroscopic methods in mineralology and materials sciences (eds. Henderson, G. S., Neuville, D. R., and Downs, R. T.), Mineralogical Society of America, Chantilly, VA, 139-174.
8 Lee, S.K., Kim, Y.-H., Chow, P., Xiao, Y., Ji, C. and Shen, G., 2018, Amorphous boron oxide at megabar pressures via inelastic X-ray scattering. Proceedings of the National Academy of Sciences, 115, 5855-5860.   DOI
9 Lee, S.K., Eng, P.J., Mao, H.K. and Shu, J. F., 2008a, Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure. Physical Review B, 78, 214203.   DOI
10 Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y. and Shu, J., 2007, Structure of alkali borate glasses at high pressure: B and Li K-edge inelastic X-ray scattering study. Physical Review Letters, 98, 105502.   DOI
11 Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y., Newville, M., Hu, M.Y. and Shu, J. F., 2005, Probing of bonding changes in $B_2O_3$ glasses at high pressure with inelastic Xray scattering. Nature Materials, 4, 851-854.   DOI
12 Lee, S.K., Kim, Y.-H., Yi, Y.S., Chow, P., Xiao, Y.M., Ji, C. and Shen, G.Y., 2019, Oxygen quadclusters in $SiO_2$ glass above megabar pressures up to 160 GPa revealed by Xray Raman scattering. Physical Review Letters, 123, 235701.   DOI
13 Lee, S.K., Park, S.Y., Kim, H.-I., Tschauner, O., Asimow, P., Bai, L., Xiao, Y. and Chow, P., 2012, Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution $^{27}Al$ NMR spectroscopy. Geophysical Research Letters, 39, L05306.
14 Prescher, C., Prakapenka, V.B., Stefanski, J., Jahn, S., Skinner, L.B. and Wang, Y., 2017, Beyond sixfold coordinated Si in $SiO_2$ glass at ultrahigh pressures. Proceedings of the National Academy of Sciences, 114, 10041-10046.   DOI
15 Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P. J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N. and Yoo, C.S., 2008b, X-ray Raman scattering study of $MgSiO_3$ glass at high pressure: Implication for triclustered $MgSiO_3$ melt in Earth's mantle. Proceedings of the National Academy of Sciences, 105, 7925-7929.   DOI
16 Momma, K. and Izumi, F., 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.   DOI
17 Moulton, B.J. A., Henderson, G.S., Fukui, H., Hiraoka, N., de Ligny, D., Sonneville, C. and Kanzaki, M., 2016, In situ structural changes of amorphous diopside (CaMg-$Si_2O_6$) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study. Geochimica et Cosmochimica Acta, 178, 41-61.   DOI
18 Murakami, M., Goncharov, A.F., Hirao, N., Masuda, R., Mitsui, T., Thomas, S.-M. and Bina, C.R., 2014, Highpressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nature Communications, 5, 5428.   DOI
19 Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K., 2008, Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406.   DOI
20 Rost, S., Garnero, E.J., Williams, Q. and Manga, M., 2005, Seismological constraints on a possible plume root at the core-mantle boundary. Nature, 435, 666-669.   DOI
21 Lin, J.F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y. Q., Hiraoka, N., Yoo, C.S., Trave, A., Eng, P., Hu, M. Y. and Chow, P., 2007, Electronic bonding transition in compressed $SiO_2$ glass. Physical Review B, 75, 012201.   DOI
22 Teter, D.M., Hemley, R.J., Kresse, G. and Hafner, J., 1998, High Pressure Polymorphism in Silica. Physical Review Letters, 80, 2145-2148.   DOI
23 Salmon, P.S., Moody, G.S., Ishii, Y., Pizzey, K. J., Polidori, A., Salanne, M., Zeidler, A., Buscemi, M., Fischer, H.E., Bull, C.L., Klotz, S., Weber, R., Benmore, C.J. and MacLeod, S.G., 2019, Pressure induced structural transformations in amorphous $MgSiO_3$ and $CaSiO_3$. Journal of Non-Crystalline Solids: X, 3, 100024.   DOI
24 Sidorin, I., Gurnis, M. and Helmberger, D.V., 1999, Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326-1331.   DOI
25 Sternemann, C. and Wilke, M., 2016, Spectroscopy of low and intermediate Z elements at extreme conditions: In situ studies of Earth materials at pressure and temperature via X-ray Raman scattering. High Pressure Research, 36, 275-292.   DOI
26 Tsuchiya, T., Caracas, R. and Tsuchiya, J., 2004, First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610.   DOI
27 Wu, M., Liang, Y., Jiang, J.-Z. and Tse, J.S., 2012, Structure and properties of dense silica glass. Scientific Reports, 2, 398.   DOI
28 Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M.L. and Sutton, S. R., 2014, Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, 3241.   DOI
29 Will, G., Bellotto, M., Parrish, W. and Hart, M., 1988, Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. Journal of Applied Crystallography, 21, 182-191.   DOI
30 Williams, Q. and Garnero, E.J., 1996, Seismic evidence for partial melt at the base of Earth's mantle. Science, 273, 1528-1530.   DOI
31 Zhao, G., Mu, H.F., Tan, X.M., Wang, D.H. and Yang, C.L., 2014, Structural and dynamical properties of $MgSiO_3$ melt over the pressure range 200-500 GPa: Ab initio molecular dynamics. Journal of Non-Crystalline Solids, 385, 169-174.   DOI
32 Yi, Y.S. and Lee, S.K., 2010, Local electronic structures of $SiO_2$ polymorph crystals: Insights from O K-edge energyloss near-edge spectroscopy. Journal of the Mineralogical Society of Korea, 23, 403-411.
33 Yi, Y.S. and Lee, S.K., 2012, Pressure-induced changes in local electronic structures of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. American Mineralogist, 97, 897-909.   DOI
34 Yi, Y.S. and Lee, S.K., 2014, Quantum chemical calculations of the effect of Si-O bond length on X-ray Raman scattering features for $MgSiO_3$ perovskite. Journal of the Mineralogical Society of Korea, 27, 1-15.   DOI
35 Yi, Y.S. and Lee, S.K., 2016, Atomistic origins of pressureinduced changes in the O K-edge x-ray Raman scattering features of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations. Physical Review B, 94, 094110.   DOI
36 Zeidler, A., Wezka, K., Rowlands, R.F., Whittaker, D.A. J., Salmon, P.S., Polidori, A., Drewitt, J.W.E., Klotz, S., Fischer, H.E., Wilding, M.C., Bull, C.L., Tucker, M.G. and Wilson, M., 2014, High-pressure transformation of $SiO_2$ glass from a tetrahedral to an octahedral network: A joint approach using neutron diffraction and molecular dynamics. Physical Review Letters, 113, 135501.   DOI
37 Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. and Luitz, J., 2001, WIEN2k (An augmented plane wave + local orbitals program for calculating crystal properties). Technische Universitat Wien, Austria.
38 Akins, J.A., Luo, S.-N., Asimow, P.D. and Ahrens, T.J., 2004, Shock-induced melting of $MgSiO_3$ perovskite and implications for melts in Earth's lowermost mantle. Geophysical Research Letters, 31, L14612.   DOI
39 Andrault, D., Fiquet, G., Guyot, F. and Hanfland, M., 1998, Pressure-induced Landau-type transition in stishovite. Science, 282, 720-724.   DOI
40 Bergmann, U., Glatzel, P. and Cramer, S.P., 2002, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchemical Journal, 71, 221-230.   DOI
41 Chow, P., Xiao, Y.M., Rod, E., Bai, L.G., Shen, G.Y., Sinogeikin, S., Gao, N., Ding, Y. and Mao, H.-K., 2015, Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure. Review of Scientific Instruments, 86, 072203.   DOI
42 Cordier, P., Mainprice, D. and Mosenfelder, J.L., 2004, Mechanical instability near the stishovite-$CaCl_2$ phase transition. European journal of mineralogy, 16, 387-399.   DOI
43 Fukui, H., Kanzaki, M., Hiraoka, N. and Cai, Y.Q., 2008, Coordination environment of silicon in silica glass up to 74 GPa: An x-ray Raman scattering study at the silicon L-edge. Physical Review B, 78, 012203.   DOI
44 Fukui, H., Kanzaki, M., Hiraoka, N. and Cai, Y.Q., 2009, X-ray Raman scattering for structural investigation of silica/silicate minerals. Physics and Chemistry of Minerals, 36, 171-181.   DOI
45 Hebert, C., 2007, Practical aspects of running the WIEN2k code for electron spectroscopy. Micron, 38, 12-28.   DOI
46 Hebert, C., Luitz, J. and Schattschneider, P., 2003, Improvement of energy loss near edge structure calculation using Wien2k. Micron, 34, 219-225.   DOI
47 Karki, B.B. and Stixrude, L.P., 2010, Viscosity of $MgSiO_3$ liquid at Earth's mantle conditions: Implications for an early magma ocean. Science, 328, 740-742.   DOI