• Title/Summary/Keyword: $O_{2}$ 과산화수소

Search Result 441, Processing Time 0.023 seconds

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.20-28
    • /
    • 2012
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. $Al_2O_3$, $Y_2O_3$, and $ZrO_2$, were coated on the material to improve heat resistance, and it was proved from endurance test that $Y_2O_3$ coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.150-158
    • /
    • 2011
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. Al2O3, Y2O3, and ZrO2, were coated on the material to improve heat resistance, and it was proved from endurance test that Y2O3 coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

  • PDF

Manganese Oxide Catalyzed Fenton-like Reduction of Chlorinated Compounds (산화망간으로 촉매화된 펜톤유사반응을 적용한 염소계화합물의 환원분해)

  • 김상민;공성호;김용수
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.95-102
    • /
    • 2002
  • Manganese oxide/ hydrogen peroxide($MnO_2$/${H_2}{O_2}$) reactions were investigated as an alternative to Fenton-like reaction to reduce chlorinated organic compounds in groundwater This system showed high degradation of CT with low ${H_2}{O_2}$concentration($\leq$294mM) at neutral condition, and CT degradation increased with increasing pH values. The rate of CT degradation was not so much dependent on increase in $MnO_2$concentration since increase in production of oxygen during the reaction obstructed reaction of ${H_2}{O_2}$ on the surface of $MnO_2$. These results show that $MnO_2$catalyzed Ponton-like reaction could be a potential alternative method for treating chlorinated organic compounds in groundwater.

The Past and Future Perspectives of Hydrogen Peroxide as Rocket Propellants (발사체 추진제로서 과산화수소의 과거와 미래전망)

  • Ha, Seong-Up;Kwon, Min-Chan;Seo, Kyoun-Su;Han, Sang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.717-728
    • /
    • 2009
  • In the field of rocket propulsion system hydrogen peroxide has been used as mono-propellant and as the oxidizer of bi-propellants. At the beginning, hydrogen peroxide was used as mono-propellant for thrusters, but later it had been replaced by hydrazine, which has better specific impulse and storability. On the other hand, to drive turbo-pumps, hydrogen peroxide is still being utilized. As the oxidizer of bi-propellants it was used until 1970's and from 1990's hydrogen peroxide once again got back to developer's interest, because one of the recent development purposes of rocket propulsion system is low-cost and ecologically-clean. Until now the storability of hydrogen peroxide has been remarkably improved. The combination of Kerosene/$H_2O_2$ also shows similar accelerating performance to Kerosene/$LO_x$ combination because of higher propellant density and higher O/F ratio, even though the propulsion performance is not as good as the combination of Kerosene/$LO_x$. Moreover, its combustion products are much cleaner than Kerosene/$LO_x$ combination.

The Response Characteristics of the Hydrogen Peroxide Monopropellant Thruster as Active Materials (활성물질에 따른 과산화수소 추력기의 응답 특성)

  • An, Sung-Yong;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.26-34
    • /
    • 2008
  • The performance of several catalysts to decompose the high test peroxide (HTP) was described in this paper. Manganese oxide, Platinum and Iridium were coated on the gamma alumina. The catalyst activity as active materials was measured at the flask reactor. The response time of various catalysts was also measured with a 50 Newton class thruster. $Ir/Al_2O_3$ that showed the best activity in the flask reactor and response time at the thruster, failed the reaction when continuous mode test was carried out with the thruster. $Pt/Al_2O_3$ and $MnO_2/Al_2O_3$ can be substitutes to decompose the HTP. In addition, for larger thruster, $MnO_2/Al_2O_3$ can be a good catalyst because its cost is below 5 % of $Pt/Al_2O_3$.

UV/H2O2 Oxidation for Treatment of Organic Compound-spilled Water (UV/H2O2 산화를 활용한 유기오염물질 유출수 처리용 공정 연구)

  • Kim, Nahee;Lee, Sangbin;Park, Gunn;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.5-12
    • /
    • 2022
  • In this study, we investigated the UV/H2O2 process to treat organic compound-spilled water. In consideration of usage and properties, benzene, toluene, phenol, and methyl ethyl ketone were selected as representative organic compounds. The selected material was first removed by natural volatilization and aeration that simulated the pretreatment of the prcoess. After that, UV/H2O2 oxidation experiments were conducted under various H2O2 concentration conditions. Benzene and toluene were mostly volatilized before reaching the oxidation process due to high volatility. Considering the volatility, oxidation experiments were performed at an initial concentration of 5 mg/L for benzene and toluene. The UV/H2O2 oxidation process achieved 100% of benzene and toluene removal after 20 minutes under all hydrogen peroxide concentration conditions. The phenol was rarely removed from the volatile experiments and oxidation tests were performed at an initial concentration of 50 mg/L. The process showed 100 % phenol removal after 30 minutes under 0.12 v/v% of hydrogen peroxide concentration condition. Methyl ethyl ketone was removed 58 % after 2 hours of volatile experiments. The process showed 99.7% Methyl ethyl ketone removal after 40 minutes under 0.08 v/v% of hydrogen peroxide concentration condition. It was confirmed that the UV/H2O2 process showed high decomposition efficiency for the four selected organic compounds, and identified the amount of hydrogen peroxide in classified organic contaminants.

Formation of Hydrogen Peroxide by the Ozonation of Aqueous Humic Acid (수중 부식산의 오존처리시 생성되는 과산화수소의 농도 변화에 대한 연구)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.659-665
    • /
    • 2000
  • The changes in $UV_{254}$ and concentrations of $H_2O_2$ formed by ozonation of aqueous humic acid in ozone/high pH, peroxone process and in the presence of radical scavenger, $HCO_3{^-}$ were investigated. This study confirmed that the formation of $H_2O_2$ by ozonation may undergo different reaction pathways compared to those of $UV_{254}$ reduction in the degradation of the humic acid. The concentration of $H_2O_2$ produced by ozonation was found to be increased with decreasing pH of the sample solution due to the higher stability of ozone molecules at acidic conditions. On the while, $UV_{254}$ reduction was found to be higher at alkaline conditions or larger amount of $H_2O_2$ additions as a radical promoter in which the producing of ${\cdot}OH$, ${\cdot}HO_2$ radicals can be more favorable. From the results, it has been suggested that the formation of $H_2O_2$ by ozonation depends mainly on the direct reactions of ozone with humic acid molecules, while $UV_{254}$ reduction is affected by both the indirect reactions of the radicals and direct reactions of ozone with humic acid.

  • PDF

Performance Evaluation of Hydrogen Peroxide Vaporizer with $K_2MnO_4/Al_2O_3$ Catalyst ($K_2MnO_4/Al_2O_3$촉매를 이용한 과산화수소 기화기의 성능평가)

  • Rang Seong-Min;An Sung-Yong;Kwon Hyuck-Mo;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.329-334
    • /
    • 2005
  • The rocket grade hydrogen peroxide has been widely used as a monopropellant in propulsion systems. Conventional decomposition of hydrogen peroxide, however, requires preheating before feeding into the reactor. In the present paper, we described an experimental study of a catalytic reactor bed that employs multiple catalysts to enhance the low temperature response in the vicinity of the reactor inlet. $K_2MnO_4$ is experimentally chose as the inlet catalyst from the candidates of silver, platinum, $La_{0.8}Sr_{0.2}CoO_3(LSC),\;and\;K_2MnO_4$. We developed new synthesis and coating method using modified alumina sol-gel method to strengthen the adhesion of $K_2MnO_4$ catalyst. from the vaporizer experiment with hydrogen peroxide at room temperature, satisfactory vaporizing performance was measured.

  • PDF

Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation (인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할)

  • Lee, Hwa-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Although it has been reported that lysyl oxidase (LOX) is involved in odontoblastic differentiation, the role of LOX on odontoblastic differentiation by hydrogen peroxide ($H_2O_2$) have not been clarified. In the present study, we investigated whether $H_2O_2$, reactive oxygen species (ROS), is modulated the messenger RNA (mRNA) expression and activity of LOX during odontoblastic differentiation of human dental pulp (HDP) cells. The mRNA expression was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, and LOX enzyme activity was measured by high sensitive fluorescent assay. Expression of the odontoblastic differentiation marker genes were assessed in the presence and absence of specific small interfering RNAs (siRNAs) of the LOX and LOXL. The $H_2O_2$-induced mRNA expression of LOX family was significant reduction of LOX, LOXL, and LOXL3 mRNA levels in HDP cells. LOX enzyme activity was increased at $H_2O_2$ 0.3 mM for 24 hours. The mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) was inhibited by LOX- and LOXL-specific siRNAs whereas the mRNA expression of dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) was inhibited by LOX-specific siRNA. In LOX enzyme activity, siRNA-induced knockdown of both LOX and LOXL inhibited the total amine oxidase activity in HDP cells, as in the case of mRNA expression. In conclusion, the essential role of $H_2O_2$ on odontoblastic differentiation suggests that its regulation by LOX may have pharmacologic importance in HDP cells.

Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold (금 처리를 통한 PEDOT 마이크로튜브 전극의 과산화수소 검출 특성 향상)

  • Park, Jongseo;Son, Yongkeun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.809-814
    • /
    • 2014
  • An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for $H_2O_2$ detection and showed very sluggish electrochemical response to $H_2O_2$. To enhance the detection efficiency to the oxidation of $H_2O_2$, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to $H_2O_2$. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of $H_2O_2$.