• Title/Summary/Keyword: $NiH_{2}$

Search Result 1,940, Processing Time 0.03 seconds

Preparation of Ni(OH)2 Hollow Spheres by Solvent Displacement Crystallization Using Micro-Injection Device (마이크로 주입장치를 이용한 용매치환결정화에 의한 중공상 수산화니켈 분말의 제조)

  • Kim, Seiki;Park, Kyungsoo;Jung, Kwang-Il
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • $Ni(OH)_2$ hollow spheres have been prepared by solvent displacement crystallization using a micro-injection device, and the effect of process parameters such as concentration and the relative ratio of the injection speed of the precursor solution, which is an aqueous solution of $NiSO_4{\cdot}6H_2O$, to isopropyl alcohol of displacement solvent have been investigated. The crystal phases after NaOH treatment are in the ${\beta}-phase$ for all process parameters. A higher concentration of $NiSO_4{\cdot}6H_2O$ aqueous solution is injected by a micro-injection device and bigger $Ni(OH)_2$ hollow spheres with a narrower particle size distribution are formed. The crystallinity and hardness of the as-obtained powder are so poor that hydrothermal treatment of the as-obtained $Ni(OH)_2$ at $120^{\circ}C$ for 24 h in distilled water is performed in order to greatly improve the crystallinity. It is thought that a relative ratio of the injection speed of $NiSO_4{\cdot}6H_2O$ to that of isopropyl alcohol of at least more than 1 is preferable to synthesize Ni(OH)2 hollow spheres. It is confirmed that this solution-based process is very effective in synthesizing ceramic hollow spheres by simple adjustment of the process parameters such as the concentration and the injection speed.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

The Electrochemical Properties of $Li_xNi_{2-x}O_2$ prepared by Heat Treatment of LiOH and $Ni(OH)_2$ (LiOH와 $Ni(OH)_2$의 열처리에 의해 제조된 $Li_xNi_{2-x}O_2$의 전기화학적 특성)

  • Lim, S.H.;Lee, J.Y.;Yoon, S.S.;Son, J.I.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.224-226
    • /
    • 1996
  • The purpose of this study is to research and develop $Li_xNi_{2-x}O_2$ cathode for lithium rechargeable battery. We investigated XRD, cyclic voltammetry, AC impedance response and charge/discharge cycling of $Li_xNi_{2-x}O_2$/Li cells. The cell resistance was decreased much at initial charge process from 100% SOC to 0% SOC. The discharge capacity based on $Li_xNi_{2-x}O_2$ of 1st and 15th cycles was 135mAh/g and 108mAh/g, respectively. The $Li_xNi_{2-x}O_2$/Li cell had a good properties.

  • PDF

Effect of Ball milling on the Hydrogenation Properties of Mg-Ni Powder Mixtures (볼밀링이 마그네슘-니켈 혼합분말의 수소화 반응특성에 미치는 영향)

  • Han, Ji-Seong;Kim, Ki-Won;Ahn, In-Shup;Ahn, Hyo-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 1998
  • The hydrogenation behavior of $Mg_2Ni$ powder prepared by ball milling has been studied. Ball milled $Mg_2Ni$ was transformed to an amorphous-like state after 200hr ballmilling, and crystallized to $Mg_2NiH_x$ by hydrogenation at got. The hydrogen storage capacity gradually increased as a function of ball milling time. $Mg_2Ni$ by 400hr ballmilling shows higher hydrogen storage capacity (3H/M) than $Mg_2Ni$ by VIM(Vacuum Induction Melting).

  • PDF

Micro Structure and Surface Characteristics of NiCr Thin films Prepared by DC Magnetron Sputter according to Annealing Conditions (DC 마그네트론 스퍼터링 NiCr 박막의 열처리 조건에 따른 미세구조 및 표면특성)

  • Kwon, Yong;Kim, Nam-Hoon;Choi, Dong-You;Lee, Woo-Sun;Seo, Yong-Jin;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.554-559
    • /
    • 2005
  • Ni/Cr thin film is very interesting material as thin film resistors, filaments, and humidity sensors because their relatively large resistivity, more resistant to oxidation and a low temperature coefficient of resistance (TCR). These interesting properties of Ni/Cr thin films are dependent upon the preparation conditions including the deposition environment and subsequent annealing treatments. Ni/Cr thin films of 250 nm were deposited by DC magnetron sputtering on $Al_2O_3/Si$ substrate with 2-inch Ni/Cr (80/20) alloy target at room temperature for 45 minutes. Annealing treatments were performed at $400^{\circ}C,\;500^{\circ}C,\;and\;600^{\circ}C$ for 6 hours in air or $H_2$ ambient, respectively. The clear crystal boundaries without crystal growth and the densification were accomplished when the pores were disappeared in air ambient. Most of surface was oxidic including NiO, $Ni_2O_3$ and $Cr_xO_y$(x=1,2, y=2,3) after annealing in air ambient. The crystal growth in $H_2$ ambient was formed and stabilized by combination with each other due to the suppression of oxidized substance on film surface. Most oxidic Ni was restored when the oxidic Cr was present due to its stability in high-temperature $H_2$ ambient.

Research on the Solution and Properties of Ni-P/n-$Al_2O_3$ Electroless Composite Plating

  • Huang, Yan-bin;Liu, Fei-fei;Zhang, Qi-yong;Ba, Guo-zhao;Liang, Zhi-jie
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.257-260
    • /
    • 2007
  • In order to further improve the corrosion resistance and wear resistance of the Ni-P coatings of electroless plating, electroless Ni-P/n-$Al_2O_3$ composite deposits were prepared by adding some nano $Al_2O_3$ Particles in Ni-P plating bath. The bath composition and proproties were studied in this paper. The orthogonal test was applied in order to get the new composite solution, taking the initial stable potential as evaluation standard and considering the elements correlation at the same time. The processing parameters have been optimized by single factor experiment in which the depositing speed was chosen as the evaluation standard. The results showed that the process is stable and the composite Ni-P/n-$Al_2O_3$ deposits werebright and smooth, whose hardness and corrosion resistance are much better than simple Ni-P coatings. Furthermore the surface appearance and structure of the composite Ni-P/n-$Al_2O_3$ coating were investigated by SEM and XRD method. It was proved that the coating surface is typical cystiform cells and its structure is amorphous. All test results ofcomposite coating showed that all various physical coating properties had been improved by adding nano-particles. The hardness of optimal coating is more than 600HV and increases to 1000HV after heat-treating, and its hardness is 20~50% higher than Ni-P coating. The rust points appeared in 200 hour by immersing the coating into the 10%HCl solution and the corrosive speed is $3{\times}10^{-3}mg/(cm^2{\cdot}h)$which was obtained after 300 hour. In the same condition Ni-P coating is $5.6{\times}10^{-3}mg/(cm^2{\cdot}h)$. The salt spray resistance of the layers can exceed 600h with the thickness $20{\mu}m$.

Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles

  • Nam, Ki-Mok;Mees, Karina;Park, Ho-Seon;Willert-Porada, Monika;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2431-2437
    • /
    • 2014
  • In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the C-fiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of $N_2$, $H_2$ and $C_2H_4$ at $700^{\circ}C$ to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Y-shaped morphology.

Modification of NiO Using 2PACz for P-i-n Perovskite Solar Cells (P-i-n 페로브스카이트 태양전지 응용을 위한 2PACz을 이용한 NiO의 개질)

  • Seon-Min Lee;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.100-106
    • /
    • 2024
  • To improve charge transfer and surface contact between NiO and perovskite, sol-gel derived NiO is modified with [2-(9H-car-bazol-9-yl)ethyl] phosphonic acid (2PACz) in p-i-n structured perovskite solar cells (PeSCs). The phosphonic acid head group in the 2PACz can bind to the hydroxyl groups on the surface of NiO by a condensation reaction, which results in a better-matched energy level with the valence band of perovskite layers, reducing nonradiative recombination and energy loss. Furthermore, the formation of pin-hole free perovskite films is observed in the 2PACz modified NiO system. Consequently, the combination of sol-gel processed NiO with optimal 2PACz exhibits a higher efficiency of 17.08% and superior stability under ambient air conditions without any encapsulation, compared to a bare NiO based device showing 13.69%.

Oxidation Behavior of $Ni_xFe_{1-x}(OH)_2$ in $C\Gamma$-containing Solutions

  • Chung, Kyeong Woo;Kim, Kwang Bum
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • The addition of Ni leads to the formation of protective rust layer on steel and subsequently high corrosion resistance of steel in $Cl^-$-containing environment. $\alpha$-FeOOH, $\beta$-FeOOH, $\gamma$-FeOOH and $Fe_3O_4$ are formed mainly on steels exposed to $Cl^-$-containing environment. As the first work of this kind, this study reports the influence of Ni on the oxidation behavior of $Ni_xFe_{1-x}(OH)_2$ in $Cl^-$-containing solution at two different pH regions(condition I under which the solution pH is allowed to decrease and condition I under which solution pH is maintained at 8) where $\gamma$-FeOOH and $Fe_3O_4$ are predominantly formed, respectively, upon oxidation of $Fe(OH)_2$, In the presence of Ni(II) in the starting solution, the formation of $\beta$-FeOOH was facilitated and the formation of $\gamma$-FeOOH was suppressed with increasing Ni(II) content and with increasing oxidation rate of Fe(II). Ni(II) was found to have $Fe_3O_4$-suppressing effect under condition II.

A Polarographic Study of Nickel-Monoethanolamine Complex (Ni-Monoethanolamine 착염의 폴라로그라피-)

  • Son, Byung-Yung;Yang, Jae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.121-123
    • /
    • 1965
  • Polarographic studies of Ni(II) ion complexed with monoethanolamine, MEA, in aqueous solution have been carried out using sodium perchlorate as a supporting electrolyte. With use of D. C. and A. C. polarograms polarographic behaviors of the complex have been discussed. The wave obtained from basic solutions are found to be well defined and reversible, while reduction of the complex at pH smaller than 8.8 seems to be kinetic controlled with different complex species. Reducing species of the complex on the mercury electrode is determined to be $Ni(MEA)_3OH$ instead of $Ni(MEA)_2(OH)_2$ which is reported by other workers. Overall stability constant of $Ni(MEA)_3OH$ is obtained to be $10^{20}.$

  • PDF