DOI QR코드

DOI QR Code

마이크로 주입장치를 이용한 용매치환결정화에 의한 중공상 수산화니켈 분말의 제조

Preparation of Ni(OH)2 Hollow Spheres by Solvent Displacement Crystallization Using Micro-Injection Device

  • 김세기 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 박경수 ((주)비츠로셀 연구소) ;
  • 정광일 ((주)비츠로셀 연구소)
  • 투고 : 2016.08.01
  • 심사 : 2016.08.09
  • 발행 : 2016.08.28

초록

$Ni(OH)_2$ hollow spheres have been prepared by solvent displacement crystallization using a micro-injection device, and the effect of process parameters such as concentration and the relative ratio of the injection speed of the precursor solution, which is an aqueous solution of $NiSO_4{\cdot}6H_2O$, to isopropyl alcohol of displacement solvent have been investigated. The crystal phases after NaOH treatment are in the ${\beta}-phase$ for all process parameters. A higher concentration of $NiSO_4{\cdot}6H_2O$ aqueous solution is injected by a micro-injection device and bigger $Ni(OH)_2$ hollow spheres with a narrower particle size distribution are formed. The crystallinity and hardness of the as-obtained powder are so poor that hydrothermal treatment of the as-obtained $Ni(OH)_2$ at $120^{\circ}C$ for 24 h in distilled water is performed in order to greatly improve the crystallinity. It is thought that a relative ratio of the injection speed of $NiSO_4{\cdot}6H_2O$ to that of isopropyl alcohol of at least more than 1 is preferable to synthesize Ni(OH)2 hollow spheres. It is confirmed that this solution-based process is very effective in synthesizing ceramic hollow spheres by simple adjustment of the process parameters such as the concentration and the injection speed.

키워드

참고문헌

  1. J. M. Cohen: Separation Processes in Hydrometallurgy, G. A. Davis (Ed.), Ellis Horwood, London, (1987) 265.
  2. Z. B. alfassi: Separation Sci. and Technol., 14 (1979) 155. https://doi.org/10.1080/01496397908062552
  3. Z. B. alfassi and S. Mosser: AlChE Journal, 30 (1984) 874. https://doi.org/10.1002/aic.690300539
  4. T.G. Zijlema, H.Oosterhof, G. J. Witkamp and G. M. van Rosmalen: Separation and Purification by Crystallization, G.D. Botsaris and K. Tokoyura (Ed.), Washington, D.C.: ACS, (1997) 230.
  5. N. Sato, Y. Wei and M. Nanjo: Metallurgical Review of MMIJ, 15 (1998) 1.
  6. Sakamishi, H. Hasuo, M. Kishino, I. Mochida and O. Okuma: Energy Fuels, 10 (1996) 216. https://doi.org/10.1021/ef950096w
  7. H. Huang and E. E. Remsen: J. Am. Chem. Soc., 121 (1999) 3805. https://doi.org/10.1021/ja983610w
  8. M. Ohmori and E. Matijevic: J. Colloid Interface Sci., 150 (1992) 594. https://doi.org/10.1016/0021-9797(92)90229-F
  9. J.E.G.J. Wijhoven and W.L. Vos: Science, 281 (1998) 802. https://doi.org/10.1126/science.281.5378.802
  10. J.P.H. Ansermet and E. Baberiswyl: J. Mater. Sci., 29 (1994) 2841. https://doi.org/10.1007/BF01117591
  11. D. Zhao: Science, 279 (1998) 548. https://doi.org/10.1126/science.279.5350.548
  12. A. Imhof and D.J. Pine: Nature, 389 (1997) 948. https://doi.org/10.1038/40105
  13. S. Kirsch, A. Doerk and E. Bartsch: Macromolecules, 32 (1999) 4508. https://doi.org/10.1021/ma980916e
  14. H.K. Lee, J.H. Park and K.C. Kwon: J. Controlled Release, 44 (1997) 283. https://doi.org/10.1016/S0168-3659(96)01534-9
  15. S.A. Jenekhe and X.L. Chen: Science, 279 (1998) 1903. https://doi.org/10.1126/science.279.5358.1903
  16. B. T. Holland, C. F. Blanford and A. Stein: Science, 281 (1998) 538. https://doi.org/10.1126/science.281.5376.538
  17. V. Belov, I. Belov and L. Harel: J. Am. Ceram. Soc., 80 (1997) 982.
  18. T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake: Phys. Rev. Lett., 86 (2001) 4163. https://doi.org/10.1103/PhysRevLett.86.4163
  19. S. Che, O. Sakurai, K. Shinozaki and N. Mizutani: J. Aerosol Sci., 29 (1998) 271. https://doi.org/10.1016/S0021-8502(97)10012-X
  20. G. Sakai, M. Miyazaki and T. Kijima: J. Electrochem. Soc., 157 (2010) A 480. https://doi.org/10.1149/1.3298456
  21. D Linden: Handbook of Batteries, 3rd (Ed.), McGraw-Hill, New York (2002) 29.1.
  22. X. Han, X. Xie and C. Xu: Opt. Mater., 23 (2003) 465. https://doi.org/10.1016/S0925-3467(02)00340-3
  23. K. Watanabe, T. Kikuoka and N. Kumagai: J. Appl. Electrochem., 25 (1995) 219.
  24. M. Oshitani, H. Yufu and K. Takashima: J. Electrochem. Soc., 136 (1989) 1590. https://doi.org/10.1149/1.2096974
  25. A. Audemer, A. Delahaye, R. Farhi, N. Sac-Epée and J. M. Tarascon: J. Electrochem. Soc., 144 (1997) 2614. https://doi.org/10.1149/1.1837873
  26. D. Louer, D. Weigel and J. I. Langford: J. Appl. Crystallogr., 5 (1972) 353. https://doi.org/10.1107/S0021889872009756