• Title/Summary/Keyword: $NiAl_2O_4$

Search Result 320, Processing Time 0.038 seconds

Synthesis and Characterization of NiAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 NiAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.95-99
    • /
    • 2015
  • $NiAl_2O_4$ nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. $Ni(NO_3)_2{\cdot}6H_2O$ and $Al(NO_3)_3{\cdot}9H_2O$ were used for the precursor in order to synthesize $NiAl_2O_4$ nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at $800{\sim}1100^{\circ}C$ for 2h. The average size and distribution of synthesized $NiAl_2O_4$ powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized $NiAl_2O_4$ powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized $NiAl_2O_4$ powder increased with an increasing heating temperature. The synthesized $NiAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscopy(FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain $NiAl_2O_4$ spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Effect of La in Partial Oxidation of Methane to Hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) Catalysts (M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 수소 제조를 위한 메탄의 부분산화반응에서 La의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.757-761
    • /
    • 2019
  • The catalytic yields of POM to hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) were investigated using a fixed bed flow reactor under atmosphere. The crystal phase behavior of reduced La(1)-Ni(5)/AlCeO3 catalysts before and after the reaction were studied via XRD analysis. FESEM and EDS analyses were further performed to show the uniformed distribution of La, Ni, and Ce metal particles on the catalyst surface. XPS results showed O2-, O22- species and metal ions such as Ce3+, Ce4+, La3+ and Ni2+ etc. were on the catalyst surface. When 1 wt% of La was added to Ni(5)/AlCeO3 catalyst, Ni2p3/2 and Ce3d5/2 increased 52.7 and 6.3%, respectively. The yield of hydrogen on the La(1)-Ni(5)/AlCeO3 catalyst was 89.1%, which was much better than that of M(1)-Ni(5)/AlCeO3 (M = Ce, Y). As Ce4+ ions of CeO2 produced by the reaction of AlCeO3 with oxygen were substitute to La3+, it made oxygen vacancies in the lattice and further improved the hydrogen yield by increasing the dispersion of Ni atoms with strong metal-support interaction (SMSI) effect.

A Study on Mossbauer Spectrum of the $NiAl_0.8Fe_1.2O_4$ ($NiAl_0.8Fe_1.2O_4$의 Mossbauer' Spectrum연구)

  • Lee, Cheol-Sae
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.19-25
    • /
    • 1995
  • In this study, the Mossbauer effect of the $NiAl_0.8Fe_1.2O_4$ was investigated in the temperature range of 77K-1000K. The spectra were composed of two component, one is sixtet and the other doublet, at low temperature. From the temperature dependence of Mossbauer spectum, it is appeared that the magnetic properties of $NiAl_0.8Fe_1.2O_4$ varies from ferrimagnetism to paramagnetism as the increasing tempereture. And the magnetic relaxation patterns of the $NiAl_0.8Fe_1.2O_4$ were shown superparamagnetic effect.

  • PDF

Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings (HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method (착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.

Synthesis of NiO-doped Al2O3 Powder by Spray Pyrolysis (분무열분해법에 의한 NiO 첨가 Al2O3 분체의 합성)

  • 박정현;조경식;김한태
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.593-602
    • /
    • 1991
  • Al2O3 and NiO-doped Al2O3 powders were prepared from the ethanol solution of Al (NO3)3$.$9H2O and Ni(NO3)2$.$6H2O by spray pylolysis method using two-fluid nozzle. As a result of spraying test with 0.3 mol/{{{{ iota }} concentration starting solution, mean droplet sizes varied with 8.99∼9.69$\mu\textrm{m}$ and those standard deviation were 4.57∼5.12. As-prepared powders which were synthesized at 1000$^{\circ}C$ have spherical shape, sizes of 0.1∼3.0$\mu\textrm{m}$ and specific surface area of 22.34∼24.20㎡/g. Most powders consisted of {{{{ gamma }}-Al2O3 phase and transforned into ${\alpha}$-A;2O3 phase by calcination at 1100$^{\circ}C$ for 1 hr. NiO-doped Al2O3 sintered bodies had better sinterability than those of pure Al2O3 and 0.3 wt% NiO-doped Al2O3 had near theoretical density and dense microstructure.

  • PDF

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming (암모니아 용액 처리에 의한 Ru-Ni/Al2O3 촉매의 메탄 수증기 개질 반응에 미치는 영향)

  • Lee, Jung Won;Jeong, Jin Hyeok;Seo, Dong Joo;Seo, Yu Taek;Seo, Yong Seog;Yoon, Wang Lai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

전자빔 처리된 $Ni/g-Al_2O_3$ 촉매에서 메탄의 합성가스 전환반응

  • Sin, Jung-Hyeok;Choe, Bu-Seong;Jeon, Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.526-529
    • /
    • 2007
  • 본 연구에서는 일정선량(600kGy)에서 전자빔 에너지(0.7, 1, 2 MeV)를 달리하여 조사한 $Ni/g-Al_2O_3$ 촉매를 이용하여 세 가지 다른 종류의 합성가스 전환반응(메탄의 이산화탄소 개질반응, 메탄의 수증기 개질반응, 메탄의 부분산화반응)을 수행하였다. 전자빔 조사는 He 분위기, 실온에서 수행하였으며, 조사된 촉매의 표면상태 변화를 살펴보기 위하여 XRD, XPS 분석을 수행하였다. 고에너지 전자빔 처리된 $Ni/g-Al_2O_3$ 촉매의 표면 특성분석 결과 촉매 표면의 Ni종은 metallic Ni, NiO, $NiAl_2O_4$의 3가지 상태로 존재함을 알 수 있었으며, 전자빔 에너지 증가에 따라 촉매 표면의 전체적인 Ni 함량과 촉매 표면의 Ni 분산도를 나타내는 Ni/Al ratio가 증가하였다. 또한, 전자빔 에너지 증가에 따라 Ni에 결합된 산소가 더 크게 감소되어 표면에서 산소 vacancy가 증가하는 결과를 가져왔으며, 이는 결국 세 가지 Ni의 상태 중 metallic Ni과 $NiAl_2O_4$를 증가시켰다. 이러한 결과들은 메탄의 이산화탄소 개질 반응과 메탄의 수증기 개질반응에서 반응물($CH_4$, $CO_2$)의 전환율과 생성물(CO, $H_2$)의 수득율을 증가시켰으며 메탄의 부분산화반응은 반응의 특성상 메탄의 전환율은 증가하나 생성물인 CO, $H_2$는 오히려 감소하는 결과를 가져옴을 알 수 있었다.

  • PDF