Browse > Article

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming  

Lee, Jung Won (Department of Advanced Energy Tech. Univ. of Sci. and Tech.)
Jeong, Jin Hyeok (Department of Chemical Engineering, Kyungpook National University)
Seo, Dong Joo (Hydrogen/Fuel cell Research Department Korea Institute of Energy Research)
Seo, Yu Taek (Hydrogen/Fuel cell Research Department Korea Institute of Energy Research)
Seo, Yong Seog (Hydrogen/Fuel cell Research Department Korea Institute of Energy Research)
Yoon, Wang Lai (Hydrogen/Fuel cell Research Department Korea Institute of Energy Research)
Publication Information
Applied Chemistry for Engineering / v.17, no.1, 2006 , pp. 87-92 More about this Journal
Abstract
The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.
Keywords
methane steam reforming; Ru-promoted nickel catalyst; aqueous $NH_4OH$ treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Xiang, Y. L. Gong, J. C. u, and Z. W. Wang, Appl. Surf Sci., 239, 94 (2004)   DOI   ScienceOn
2 J. Schested, J. A. P. Gelten, I. N. Remediakis, H. Bengaard, and J. K. Norskov, J. Catal., 223, 432 (2004)   DOI   ScienceOn
3 A. A. Lemonidou, M. A. Goula, and I. A. Vasalos, Catal. Today, 46, 175 (1998)   DOI
4 Z. Hou and T. Yashima, Catal. Letters, 89, 193 (2003)   DOI   ScienceOn
5 T. Suzuki, H. lwanami, and T. Yoshinari, Int. J. Hydro. Ener., 25, 119 (2000)   DOI   ScienceOn
6 C. Crisafulli, S. Scire, R. Maggiore, S. Minico, and S. Galvagno, Catal. Letters, 59, 21 (1999)   DOI   ScienceOn
7 I. Rossetti and L. Forni, Appl. Catal. A : Gen., 282, 315 (2005)   DOI   ScienceOn
8 V. Mazzieri, F. Coloma-Pascual, A. Arcoya, P. C. L'argentiere, and N. S. Figoli, Appl. Surf Sci., 210, 222 (2003)   DOI
9 J. T. Richardson, B. Turk, and M. V. Twigg, Appl. Catalysis A : Gen., 148, 97 (1996)   DOI   ScienceOn
10 C. Crisafulli, S. Scire, S. Minico, and L. Solarino, Appl. Catal. A: Gen., 225, 1 (2002)   DOI
11 D. L. Trimm, Catal. Today, 49, 3 (1999)   DOI   ScienceOn
12 Y. S. Oh, J. Korea Ind. Eng. Chem., 6, 19 (2003)
13 F. B. Rasmussen, J. Sehested, H. T. Teunissen, A. M. Molenbroek, and B. S. Clausen, Appl. Catal. A : Gen., 267, 165 (2004)   DOI
14 J. W. Snoeck, G. F. Forrnent, and M. Fowles, Ind. Eng. Chem. Research, 41, 4252 (2002)   DOI   ScienceOn
15 D. L. Trimm, Catal. Today, 37, 233 (1997)   DOI   ScienceOn