• Title/Summary/Keyword: $Nano-TiN_x$

Search Result 65, Processing Time 0.032 seconds

Characteristic properties of TiN thin films prepared by DC magnetron sputtering method for hard coatings (Hard coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-354
    • /
    • 2007
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness. In this paper, we wanted see how the films properties are changed according to DC power. TiN thin films were deposited by direct current (DC) magnetron sputtering method using TiN compound target on silicon substrates. The films structural properties are examined by X-ray Diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester, nano-stress tester. Especially in DC power of 150 W, the maximum hardness and the minimum residual stress of TiN film exhibited about 25 GPa and 1 GPa, respectively. And also, the critical load of TiN film prepared by magnetron sputtering method were measured over 30 N.

  • PDF

Synthesis and characterization of nanocrystalline Al0.5Ag0.5TiO3 powder

  • Kumar, Sandeep;Sahay, L.K.;Jha, Anal K.;Prasad, K.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.211-218
    • /
    • 2013
  • A low-cost, green and reproducible citric acid assisted synthesis of nanocrystalline $Al_{0.5}Ag_{0.5}TiO_3$ (n-AAT) powder is reported. X-ray, FTIR, energy dispersive X-ray, transmission electron microscopy and scanning electron microscopy analyses are performed to ascertain the formation of n-AAT. X-ray diffraction data analysis indicated the formation of monoclinic structure. Spherical shaped particles having the sizes of 3-15 nm are found. The mechanism of nano-transformation for the soft-chemical synthesis of n-AAT has been explained using simple organic chemistry rules and nucleation and growth theory. Dielectric study revealed that AAT ceramic might be a suitable candidate for capacitor applications.

Mechanical Properties of High-Hardness TiNX Thin Films Deposited by Pure Nitrogen Plasma Using Magnetron Sputtering Deposition (마그네트론 스퍼터링 증착법을 사용하여 순수한 질소 플라즈마에 의해 성막된 고경도 TiNX 박막의 역학적 특성)

  • Lee, Chang-Hyun;Rhee, Byung-Roh;Bae, Kang;Park, Chang-Hwan;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.514-519
    • /
    • 2017
  • TiN (titanium nitride) films were prepared using the RF magnetron sputtering technique. The films were deposited by pure $N_2$ plasma sputtering. Their mechanical properties, such as nano-indentation hardness, friction coefficient, and surface wettability, have been investigated. X-ray diffraction (XRD) studies revealed that the orientation of $TiN_X$ films changed towards the (111) orientation with decreasing working pressure due to a strong compressive stress during deposition. The strongest TiN (111) orientation was found when the film was deposited at a working pressure of 1 Pa. This film showed the largest hardness (16 GPa) and smallest friction coefficient (0.17) among the studied samples. Moreover, this film was found to be accompanied by a water-repellent surface with water contact angle more than $100^{\circ}$.

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Loganathan, Kumaresan;Bommusamy, Palanisamy;Muthaiahpillai, Palanichamy;Velayutham, Murugesan
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.

Optimum Compositions for Piezoelectric Properties of Pb-free (Bi0.5Na0.5)(1-x)BaxTiO3 Ceramics (비납계 (Bi0.5Na0.5)(1-x)BaxTiO3 압전 세라믹 재료의 최적 조성)

  • Sung, Yeon-Soo;Yeo, Hong-Goo;Cho, Jong-Ho;Song, Tae-Kwon;Jeong, Soon-Jong;Song, Jae-Sung;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.68-72
    • /
    • 2007
  • Optimum compositions for piezoelectric properties of $(Bi_{0.5}Na_{0.5})_{(1-x)}Ba_xTiO_3$ ceramics were investigated in the range of $x=0{\sim}0.1$ covering rhombohedral to tetragonal phase regions. No impurity phases other than a perovskite phase were found and the grain size decreased with increasing x. A two-phase coexisting morphotropic phase area rather than boundary dividing rhombohedral and tetragonal phase regions appeared to exist at $x=0.05{\sim}0.08$. As for piezoelectric properties within morphotropic phase compositions, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($K_p$) showed peak values at x=0.065, 192 pC/N and 34%, respectively, indicating x=0.065 as an optimum composition for piezoelectric $(Bi_{0.5}Na_{0.5})_{(1-x)}Ba_xTiO_3$ ceramics.

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings (Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성)

  • Ahn, Seung-Su;Park, Jong-Keuk;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.406-413
    • /
    • 2020
  • Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Characteristic Properties of TiN Thin Films Prepared by DC Magnetron Sputtering Method for Hard Coatings (Hard Coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.660-664
    • /
    • 2008
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness, chemical stability, low friction and good adhesion properties. In this study, we investigated the effect of DC power on the characteristics of TiN thin films deposited on Si and glass substrates by DC magnetron sputtering using TiN target. We made TiN films of 300 nm thickness with various DC powers. The structural properties of films are investigated by x-ray diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester. The rms roughness was measured by atomic forced microscopy (AFM). In the result, TiN films had the smooth surface and exhibited (111) directions with the increase of DC Power. Also, especially in case of 175 W DC power, TiN film exhibited the maximum hardness about 8 GPa, and the critical load near 25.

Effects of TiN and ZrN Coating on Surface Characteristics of Orthodontic Wire (교정용 와이어의 표면특성에 미치는 TiN 및 ZrN 코팅영향)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.147-155
    • /
    • 2008
  • The dental orthodontic wire provides a good combination of strength, corrosion resistance and moderate cost. The purpose of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance and physical property of orthodontic wire using various instruments. Wires(round type and rectangular type) were used, respectively, for experiment. Ion plating was carried out for wire using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive X-ray spectroscopy(EDS), atomic force microscopy(AFM), vickers hardness tester, and electrochemical tester. The surface of TiN and ZrN coated wire was more smooth than that of other kinds of non-coated wire. TiN and ZrN coated surface showed higher hardness than that of non-coated surface. The corrosion potential of the TiN coated wire was comparatively high. The current density of TiN coated wire was smaller than that of non-coated wire in 0.9% NaCl solution. Pit nucleated at scratch of wire. The pitting corrosion resistance $|E_{pit}-E_{rep}|$ increased in the order of ZrN coated(300 mV), TiN coated(120 mV) and non-coated wire(0 mV).

Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw (ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동)

  • Kim, S.J.;Moon, Y.P.;Park, G.H.;Jo, H.H.;Kim, W.G.;Son, M.K.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.