• Title/Summary/Keyword: $N_2O$ reduction

Search Result 677, Processing Time 0.026 seconds

A Scale-Up Test for Preparation of AlN by Carbon Reduction and Subsequent Nitridation Method (탄소환원질화법에 의한 AlN 제조 규모확대 시험결과)

  • Park, Hyung-Kyu;Kim, Sung-Don;Nam, Chul-Woo;Kim, Dae-Woong;Kang, Moon-Soo;Shin, Gwang-Hee
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.75-83
    • /
    • 2016
  • AlN powder was prepared by carbon reduction and subsequent nitridation method through the scale-up experiments of 0.7 ~ 1.5 kg per batch. AlN powder was synthesized using the mixture of $Al_2O_3$ powder and carbon black at $1,550{\sim}1,750^{\circ}C$ for 0.5 ~ 4 hours under nitrogen atmosphere (flow rate of nitrogen gas: $10{\sim}40{\ell}/min$) at $2.0{\times}10^{-1}Torr$. Experimental results showed that $1,700{\sim}1,750^{\circ}C$ for the reaction temperature, 3 hr for reaction time, and $40{\ell}/min$ for the flow rate of nitrogen gas were the optimal conditions. Also, in order to remove carbon in the synthesized AlN, the remained carbon was removed at $650{\sim}750^{\circ}C$ for 1 ~ 2 hr using horizontal tube furnace. The results showed that 1 : 3.2 mol ratio of $Al_2O_3$ to carbon black, reaction temperature of $750^{\circ}C$, reaction time of 2 hours, rotating speed of 1.5 rpm under atmosphere condition were the optimal conditions. Under these conditions, high-purity AlN powder over 99% could be prepared: carbon and oxygen contents of the AlN powder were 835 ppm and 0.77%, respectively.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Synthesis of $\beta$-Sialon from Wando Pyrophyllite (완도납석으로 부터 $\beta$-Sialon의 합성)

  • 이홍림;신현곤
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 1984
  • $eta$-Sialon synthesis was investigated via the simulataneous reduction and nitriding of Wando pyrophyllite. When Wando pyrophyllite-graphite-$Si_3N_4$ seed mixture was heated at 135$0^{\circ}C$ for as long as 10 hours in 80% $N_2$-20%$H_2$ atomsphere $eta$-$Si_3N_4$ solid solution was mainly formed together with a small amount of $\alpha$-$Si_3N_4$ The value z of the forming $Si_{6-x}Al_2O_2N{8-z}$ was decreased with heating time.

  • PDF

Treatability Evaluation of N-Hexadecane and 1-Methylnaphthalene during Fenton Reaction

  • Chae, Myung-Soo;Woo, Sung-Geun;Yang, Jae-Kyu;Bae, Sei-Dal;Choi, Sang-Il
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.217-225
    • /
    • 2012
  • In this study, the treatability of two target contaminants during the Fenton reaction, n-hexadecane and 1-methylnaphthalene, was evaluated as a function of the amounts of $FeCl_2$ and $H_2O_2$ injected into open and closed reaction systems. In the Fenton reaction of n-hexadecane and 1-methylnaphthalene, the mass recovery of the target contaminants was above 95% in the closed system. However, when the Fenton reaction was performed with high amounts of $H_2O_2$ and $FeCl_2$ injected in the open system, a reduction of approximately 40% of the initial mass of 1-methylnaphthalene was observed. This trend may be explained by the unique physical properties of 1-methylnaphthalene, which has higher volatility than n-hexadecane. Further, this trend was well correlated with the rise in high temperature at the initial reaction stage. Considering the mass recovery of the two target contaminants, the reaction temperature, and the residual concentration of $H_2O_2$ at different amounts of $FeCl_2$ and $H_2O_2$ injected, it can be suggested that the Fenton reaction should be performed with controlled conditions that can provide a suitable reaction environment between oxidant and contaminants.

Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure

  • Kim, Hogyoung;Yun, Hee Ju;Choi, Seok;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.463-468
    • /
    • 2019
  • The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.

The Selective Catalytic Oxidation of Ammonia: Effect of Physicochemical Properties on Pt/TiO2 (Pt/TiO2 촉매의 물리화학적 특성이 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Kim, Dong Ho;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, the study of the selective catalytic oxidation (SCO) for controlling the $NH_3$ at $200{\sim}350^{\circ}C$ range was investigated. Physicochemical properties of the catalysts were determined using XRD and XPS analysis. In the case of catalytic activity according to thermal treatment condition, the reduction catalyst showed better activity than that of using the calcination catalyst. It was confirmed that the valence state of reduction catalyst was mainly $Pt^{2+}$ and $Pt^0$ as analyzed by XPS. Also, when comparing the reaction activities of $Pt/TiO_2$ catalysts according to the reduction temperature, the $NH_3$ conversion of the catalyst reduced at $700^{\circ}C$ showed the most excellent activity. However, the best activity of $NH_3$ conversion to $N_2$ was obtained for the catalyst reduced at $600^{\circ}C$.

Antireflection Layer Coating for the Red Light Detecting Si Photodiode (적색검출 Si 포토다이오드의 광반사 방지막 처리)

  • Chang, Gee-Keun;Hwang, Yong-Woon;Cho, Jae-Uk;Yi, Sang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.389-393
    • /
    • 2003
  • The effect of antireflection layer on the reduction of optical loss has been investigated in Si photodiodes detecting red light with central wavelength of 670 nm. The theoretical analysis showed minimum reflection loss of 6% for the $SiO_2$thickness of about $1100∼1200\AA$ in the $SiO_2$-Si system with the single antireflection layer and no reflection loss for the X$N_3$N$_4$$SiO_2$thickness of $2000\AA$/$1200\AA$ in the $Si_3$$N_4$$SiO_2$-Si system with double antireflection layer. In our experiments, Si photodiodes with the web-patterned $p^{+}$-shallow diffusion region were fabricated by bipolar IC process technology and the devices were classified into three kinds according to the structure of $Si_3$$N_4$/$SiO_2$antireflection layer. The fabricated devices showed maximum spectral response in the optical spectrum of 650∼700 nm. The average photocurrents of the devices with the $Si_3$$N_4$$SiO_2$thickness of $1000\AA$/X$SiO\AA$, and $2000\AA$$1800\AA$ under the incident power, of -17 dBm were 3.2 uA, 3.5 uA and 3.1 uA, respectively.

Partial oxidation of n-butane over ceria-promoted nickel/calcium hydroxyapatite (세리아가 첨가된 니켈/칼슘 하이드록시 아파타이트 촉매 상의 부탄 부분산화 연구)

  • Kwak, Jung-Hun;Lee, Sang-Yup;Kim, Mi-So;Nam, Suk-Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.89-92
    • /
    • 2007
  • Partail oxidation(POX) of n-butane was investigated in this research by employing ceria-promoted Ni/calcium hydroxyapatite catalysts ($Ce_xNi_{2.5}Ca_{10}(OH)_2(PO_4)_6$ ; x = $0.1{\sim}0.3$) which had recently been reported to exhibit good catalytic performance in POX of methane and propane. The experiments were carried out with changing ceria content, $O_2/n-C_4H_{10}$ ratio and temperature. As the $O_2/n-C_4H_{10}$ feed ratio increased up to 2.75, n-$C_4H_{10}$ conversion and $H_2$ yield increased and the selectivity of methane and other hydrocarbons decreased. But with $O_2/n-C_4H_{10}$ = 3.0, $n-C_4H_{10}$ conversion and $H_2$ yield decreased. This is considered due to that too much oxygen may inhibit the reduction of Ni or induce the oxidation of Ni, which results in poor catalytic activity. The optimum $O_2/n-C_4H_{10}$ ratio lay between 2.50 and 2.75. $Ce_{0.1}Ni_{2.5}Ca_{10}(OH)_2(PO_4)_6$ showed the highest $n-C_4H_{10}$ conversion and $H-2$ yield on the whole. In durability tests, higher hydrogen yield and better catalyst stability were obtained with the $O_2/n-C_4H_{10}$ ratio of 2.75 than with the ratio of 2.5.

  • PDF

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

Application of major plant nutrient releasing model and N2O emissions to the leachate from the mixtures of rice hull biochar and organic fertilizer materials (왕겨 바이오차와 유기농자재 혼합에 따른 주요 양분 용출 모델 적용 및 N2O 배출량 산정)

  • DongKeon Lee;JaeLee Choi;ChangKi Shim;JooHee Nam;SeokIn Youn;JeongSeok Song;Dogyun Park;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • This batch experiment evaluated the impacts of major plant nutrient releases by applying the modified Hyperbola model on the leachates and N2O emissions from incorporated rice hull biochar with organic fertilizer materials. The treatments consisted of the control as incorporated with organic fertilizer materials, the incorporated rice hull biochar with organic fertilizer materials, and the incorporated plasma-activated rice hull biochar with organic fertilizer materials under redox conditions. The results indicated that the maximum release amount of NH4-N was 3486.3 mg L-1 in the control, and their reduction rates of NH4-N, NO3-N, PO4-P, and K were 8.0%, 17.5% 44.3.0% and 8.7%, respectively, relative to the control. In the control, the highest soluble amount of PO4-P was 681.0 mg L-1. The estimations for accumulated NH4-N, NO3-N, PO4-P, and K-releases in all the treatments were significantly (p<0.01) fitted with a modified Hyperbola model. For greenhouse gas emissions, the lowest cumulative N2O was 340.4 mg kg-1 in the soil incorporated with plasma-activated rice hull biochar, and the reduction rates were 27.8% and 86.4% in the rice hull biochar and plasma-activated rice hull biochar treatments, respectively, compared to the control. Therefore, it concluded that the incorporated rice hull biochar can be especially useful for controlling PO4-P release and N2O emissions for bio-fertilizer applications.