DOI QR코드

DOI QR Code

Antireflection Layer Coating for the Red Light Detecting Si Photodiode

적색검출 Si 포토다이오드의 광반사 방지막 처리

  • Chang, Gee-Keun (Department of Elentronics and Computer Science, Dankook University) ;
  • Hwang, Yong-Woon (Department of Elentronics and Computer Science, Dankook University) ;
  • Cho, Jae-Uk (Department of Elentronics and Computer Science, Dankook University) ;
  • Yi, Sang-Yeoul (Department of Elentronics and Computer Science, Dankook University)
  • 장지근 (단국대학교 전자컴퓨터학부) ;
  • 황용운 (단국대학교 전자컴퓨터학부) ;
  • 조재욱 (단국대학교 전자컴퓨터학부) ;
  • 이상열 (단국대학교 전자컴퓨터학부)
  • Published : 2003.06.01

Abstract

The effect of antireflection layer on the reduction of optical loss has been investigated in Si photodiodes detecting red light with central wavelength of 670 nm. The theoretical analysis showed minimum reflection loss of 6% for the $SiO_2$thickness of about $1100∼1200\AA$ in the $SiO_2$-Si system with the single antireflection layer and no reflection loss for the X$N_3$N$_4$$SiO_2$thickness of $2000\AA$/$1200\AA$ in the $Si_3$$N_4$$SiO_2$-Si system with double antireflection layer. In our experiments, Si photodiodes with the web-patterned $p^{+}$-shallow diffusion region were fabricated by bipolar IC process technology and the devices were classified into three kinds according to the structure of $Si_3$$N_4$/$SiO_2$antireflection layer. The fabricated devices showed maximum spectral response in the optical spectrum of 650∼700 nm. The average photocurrents of the devices with the $Si_3$$N_4$$SiO_2$thickness of $1000\AA$/X$SiO\AA$, and $2000\AA$$1800\AA$ under the incident power, of -17 dBm were 3.2 uA, 3.5 uA and 3.1 uA, respectively.

Keywords

References

  1. Chen, C.Y., Appl. Phys. Lett., 43, 308 (1983) https://doi.org/10.1063/1.94295
  2. H. Melchior, A. R. Hartman , D. P. Schinke, and T.E. Seidel, Bell Syst. Tech. J. z, 57, 1791 (1978) https://doi.org/10.1002/j.1538-7305.1978.tb02127.x
  3. W. Shockley, M. Sparks and G. K. Teal, Phys. Rev., 83, 151 (1951) https://doi.org/10.1103/PhysRev.83.151
  4. Fiber Optic Device Data Book, Thoshiba, 36 (1994)
  5. A. Ghazi, T. Heide and H. Zimmermann, Proc. 43rd lnt. Scientific Colloquium Ilmenau, 2, 380 (1998)
  6. Wang, E. Y., F. T. S., Simms, V. L., Brandhort, H. W., Jr. and Broder, J. D., Conf. Rec. IEEE Photo. Spec. Conf., 10th, Palo Alto, 168 (1973)
  7. E. S. Yang, Microelectronic Devices, McGraw Hill, 369 (1988)
  8. I. Magdo and A. Bogh, J. Electrochem. Soc., 125, 932 (1987) https://doi.org/10.1149/1.2131594
  9. S. Wolf, Silicon Processing for the VLSI Era-Vol.2 : Process Integration, Lattice Press, 19 (1990)
  10. Harold J. Hovel, Semiconductors and Semimetals-Vol.11 : Solar Cells, Academic Press, 203 (1975)
  11. M. Yamamoto, M. Kubo and K. Nakao, IEEE Transactions on Electron Devices, 42(1), 58 (1995) https://doi.org/10.1109/16.370035
  12. T. Takimoto, N. Fukunaga, M. Kubo and N. Okabayashi, IEEE Transactions on Consumer Electronics, 44(1), 137 (1998) https://doi.org/10.1109/30.663740
  13. N. Fukunaga, M. Yamamoto, M. Kubo and N. Okabayashi, IEEE Transactions on Consumer Electronics, 43(2), 157 (1997) https://doi.org/10.1109/30.585534