• Title/Summary/Keyword: $N_2O$ Decomposition

Search Result 265, Processing Time 0.022 seconds

NO Removal Reactoin by Cu/zeolite (CU/제올라이트에 의한 NO 제거반응)

  • 신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.5-11
    • /
    • 1991
  • To remove NO from flue gas, a direct decomposition method to $N_2$ and $O_2$ was investigated by using copper / zeolite catalyst. The copper ion-exchanged HY type zeolite has high activity on NO decomposition. The decomposition activity was increased with the increase of ion-exchange level, contacting time and reaction temperature in the range of 30$0^{\circ}C$ -50$0^{\circ}C$ , and decreased with the oxygen addition.

  • PDF

Fabrication and Characterization of High Purity Al2O3 by Decomposition of Selicite (세리사이드 분해에 의한 고순도 Al2O3의 제조 및 특성에 관한 연구)

  • 이경희;박한수;송명신
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.431-436
    • /
    • 1987
  • High purity Al2O3 has been extracted from serlcite of clayminerals, selicite was treated by H2SO4(2N∼18N) solution, NH4OH treatment(PH8.5∼10.0) and metallic impurities such as Fe were removed by NaOH treatment. The tendency of extraction yield of ${\alpha}$-Al2O3 have been investigated by relating reaction time, acid concentration. Reaction products were analyzed by DT-TGA, chemical analysis and X-ray diffractometer. Prepared ${\alpha}$-Al2O3 power is fired in air at 1400$^{\circ}C$, 1600$^{\circ}C$ 2hr. The results are as follows; 1. The most suitable extracting conditions of ${\alpha}$-Al2O3 from Selicite were N-H2SO4, 120 min acidtreating time. 2. The optimum pH condition was 9.0. 3. Physical properties of sintered Al2O3 bodies were as follows. Relative density is 99%. Water absorption is 0.26%. Rock well hardness is 89.

  • PDF

Direct Decomposition of Nitrous Oxide over Fe-beta Zeolite (Fe-베타제올라이트 상에서 아산화질소의 직접분해반응)

  • Park, Jung-Hyun;Jeon, Seong-Hee;Khoa, Nguyen Van;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • The effect of calcination temperature or hydrothermal treatment of commercial Fe-beta zeolites in the range of $450{\sim}900^{\circ}C$ were examined in the direct decomposition of $N_2O$. Fe-beta zeolites used were characterized using XRD, $N_2$ sorption, $^{27}Al$ MAS NMR and XPS. Although the surface area and micropore volume of Fe-beta zeolite after calcination at $900^{\circ}C$ and hydrothermal treatment at $750^{\circ}C$ decreased ca. 30%, a larger decrease in the surface area and micropore volume by hydrothermal treatment was observed than by calcination treatment alone. However, the Al sites in frameworks of zeolite were conserved in stable tetrahedral form resulting from low degree of dealumination which was related to the adjacent Fe ions on the Al sites. This could likely be correlated with the conservation of high surface area and micropore volume of Fe-beta zeolites. The increase in the calcination or hydrothermal treatment temperature caused the increase of decomposition temperature of $N_2O$ and the severe deactivation was observed after hydrothermal treatment than calcination treatment.

Comparison of physical properties and dye photo-degradation effects for $carbon/TiO_2$ complexes

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.196-203
    • /
    • 2007
  • We have studied a method for the preparation of hybrid $carbon/TiO_2$ complexes involving pitch coating, pitch binding and the penetration of titanium n-butoxide(TNB) solution with porous carbon. The photocatalysts were investigated with surface textural properties and SEM morphology, structural crystallinity and elemental identification between porous carbon and $TiO_2$, and dye decomposition performance. For the all $carbon/TiO_2$ complexes prepared by some kinds of different methods, the excellent photocatalytic effect for dye degradation should be attributed to the both effects between photo-decomposition of the supported $TiO_2$ and adsorptivity of the porous carbons.

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite

  • Fu, Da-Xue;Feng, Nai-Xiang;Wang, Yao-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2483-2488
    • /
    • 2012
  • The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide (Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응)

  • Baek, Seo-Hyeon;Youn, Kyunghee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.159-168
    • /
    • 2022
  • Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

Ab Initio Quantum Mechanical Study for the Photolysis and Unimolecular Decomposition Reactions in the Atmosphere of CF₃OH

  • 김승준;송현섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1493-1500
    • /
    • 1999
  • The electronic transitions from the ground state to low-lying excited states of CF₃OH have been investigated using high level ab initio quantum mechanical techniques. Also the possible photodissociation procedures of CF₃OH have been considered. The highest level employed in this study is TZP CCSD(T) level of theory. The possible four low-lying excited states can result by the excitation of the lone pair electron (n) in oxygen to σ$^*$ molecular orbital in C-O or O-H bond. The vertical transition (n → σ$^*$) energy is predicted to be 220.5 kcal/mol (130 nm) at TZ2P CISD level to theory. The bond dissociation energies of CF₃OH to CF₃O +H and CF₃+OH have been predicted to be 119.5 kcal/mol and 114.1 kcal/mol, respectively, at TZP CCSD level of theory. In addition, the transition state for the unimolecular decomposition of CF₃OH into CF₂O + HF has been examined. The activation energy and energy separation for this decomposition have been computed to be 43.6kcal/mol and 5.0 kcal/mol including zero-point vibrational energy corrections at TZP CCSD(T) level of theory.ed phenols were also estimated.

Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

  • Ko, Byong-Gu;Kim, Myung-Sook;Park, Seong-Jin;Yun, Sun-Gang;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.648-657
    • /
    • 2015
  • Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, $CO_2-C$ flux, extractable N and $N_2O$ emission were determined using closed chamber for 4 weeks at 10, 15, $20^{\circ}C$ of incubation temperature after the mixture of $2Mgha^{-1}$ rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at $10{\sim}20^{\circ}C$ of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased $NH_4-N$ and $NO_3-N$ content as well as the $N_2O$ emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

The Effect of RF Power and $SiH_4$/($N_2$O+$N_2$) Ratio in Properties of SiON Thick Film for Silica Optical Waveguide (실리카 광도파로용 SiON 후막 특성에서 RF Power와 $SiH_4$/($N_2$O+$N_2$) Ratio가 미치는 영향)

  • 김용탁;조성민;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1150-1154
    • /
    • 2001
  • Silicon oxynitride (SiON) thick films using the core layer of silica optical waveguide have been deposited on Si wafer by PECVD at low temperature (32$0^{\circ}C$) were obtained by decomposition of appropriate mixture of (SiH$_4$+$N_2$O+$N_2$) gaseous mixtures under RF power and SiH$_4$/($N_2$O+$N_2$) ratio deposition condition. Prism coupler measurements show that the refractive indices of SiON layers range from 1.4663 to 1.5496. A high SiH$_4$/($N_2$O+$N_2$) of 0.33 and deposition power of 150 W leads to deposition rates of up to 8.67 ${\mu}{\textrm}{m}$/h. With decreasing SiH$_4$/($N_2$O+$N_2$) ratio, the SiON layer become smooth from 41$\AA$ to 6$\AA$.

  • PDF