• Title/Summary/Keyword: $N_2O$저감

Search Result 117, Processing Time 0.03 seconds

Characteristics of Non-Thermal Plasma Process for Air Pollution Control (대기오염 물질 저감을 위한 저온 플라즈마 반응공정의 특성)

  • 송영훈;신동남;신완호;김관태;최연석;최영석;이원남;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.247-256
    • /
    • 2000
  • Basic characteristics of non-thermal plasma process to remove C2H4 and NO have been experimentally investigated with a packed-bed type reactor and an ac power supply. The performance of the non-thermal plasma generated by ac power supply was compared with that of a wire-plate type reactor equipped with a pulsed power supply. The result shows that the non-thermal plasma can be effectively generated with an AC power supply that can be easily fabricated with conventional techniques. In order to understand the basic reaction mechanisms of the non-thermal plasma process, parametric tests for different carrier gases(air and nitrogen) and for different reaction pathways have been performed. The test results show that O3 generated by non-thermal plasma plays an dominant role to oxidize C2H4 and NO over N and O radicals when these pollutant gases are carried by dry air under room temperature condition. Experimental observations, however, indicate that N and O radicals can significantly affect on the removal process of the pollutant gases under certain conditions.

  • PDF

Nonmetallic Inclusion in the Large Steel Ingot Casting Process (대형강괴 주조공정 중 비금속개재물 저감연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.52-56
    • /
    • 2008
  • Inclusions in forged large steel ingots of plan carbon steel and tool steel are investigated using optical microscop observation and WDX analysis. The large nonmetallic inclusions which is over $30\sim300{\mu}m$ in their diameter were observed in the samples that has been no good on a nondestructive test. The most of the inclusions were consist of some kind of oxides, ${Al_2}{O_3}$, $SiO_2$, CaO, MgO in forms of particles and glassy with an iron particles. The experimental large steel ingot was cast with a pouring temperature which is about ten centigrade higher than the field standard. The inclusions were observed in the test ingot are the smaller than that was in a usual forged steel ingot and is spherical shape with a glassy agglomerated ${Al_2}{O_3}-SiO_2-CaO-MgO$ particle. The pouring temperature is affected on removing the nonmetallic inclusions during the solidification by a floating mechanism.

  • PDF

Selective Catalytic Reduction (SCR) Technology Trend for the Removal of Nitrogen Oxide from Ship Flue Gas (선박 배가스 내 질소산화물 제거를 위한 선택적촉매환원법(SCR) 기술동향)

  • Won, Jong Min;Hong, Sung Chang
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.5
    • /
    • pp.25-40
    • /
    • 2019
  • 전 세계적으로 환경문제를 해결하기 위한 방안으로 환경규제를 강화시키며 특히 다양한 대기오염 물질 중 최근 큰 이슈인 초미세먼지 저감을 위해 전구물질로 알려진 질소산화물을 제어하기 위한 다양한 기술개발이 가속화되고 있다. 특히, 다양한 처리기술 중에 기술적·경제적인 이점을 갖춘 선택적 촉매환원법(selective catalytic reduction, SCR) 기술을 통하여 질소산화물 제거를 위해 암모니아를 환원제로 반응에 참여시켜 인체에 무해한 H2O, N2로 전환하는 기술이 대표적이다. 최근 전 세계적으로 다양한 산업군에서 질소산화물이 배출되고 있으며, 점오염원뿐만이 아니라 비점오염원(mobile sources)에 대한 규제가 강화되고 있다. 디젤엔진이 장착된 선박 배가스 처리장치 내 SCR 기술이 주목을 받고 있으며, NH3-SCR에 사용되는 촉매는 주로 VOx/TiO2, VOx/W/TiO2 촉매가 대표적이다. 한편 선박 디젤엔진에 사용되는 연료에 따라 연소배가스 특성이 다르다. 이러한 연료가 연소됨에 따라 SO2, SO3가 발생되고 환원제인 NH3와 결합하여 황산암모늄염((NH4)2SO4), ABS (ammonium bisulfate, NH4HSO4)과 같은 염을 형성시켜 탈질촉매의 비활성화 문제가 발생된다. 이러한 비활성화 물질이 침적된 탈질촉매를 재활성화 시키기 위하여 열 산화를 통해 재생시키고 있다. 이처럼 선박용 SCR 촉매는 강화되는 배출규제 및 엔진기술의 발달로 저감되는 운전 온도에 대비하여 저온 활성 재생이 가능한 고활성, 고내구성 촉매기술 개발이 필요하다.

Nitrogen Budgets of Agriculture and Livestock in South Korea at 2010 (2010년도 대한민국 농업 및 축산업지역의 질소 유입 및 유출 수지)

  • Nam, Yock-Hyun;An, Sang-Woo;Jung, Myung-Sook;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.204-213
    • /
    • 2012
  • The objectives of this research were to estimate nitrogen budgets in agriculture and livestock in 2010, and to evaluate nitrous oxide ($N_2O$) emission by a local government. Input-output budgets for nitrogen were categorized into two sections including agriculture and livestock. Fertilizer, deposition, fixation, compost, irrigation, and feed were used as the nitrogen inputs while crop production, crop uptake, denitrification, volatilization, leaching, compost, and ocean disposal were used as the nitrogen outputs. Annual nitrogen input and output for agriculture and livestock were 1,148,848 N ton/yr and 610,380 N ton/yr respectively indicating the decrease of the nitrogen input and output, compared to our previous researches in 2005 and 2008. Total nitrogen input in 16 local government was estimated resulting that $N_2O$ emission was the highest for Jeonnam (2,574 ton/yr) and the lowest for Seoul (7 ton/yr).

A Study of CO, $C_{3}H_{6}$, and $SO_{2}$ oxidation for Diesel Emission Control over Pt, Pd, Pt-W and Pd-w Catalysts and their Characterization (디젤 자동차 배출 가스 저감을 위한 Pt, Pd 촉매의 특성 분석 및 W 첨가에 따른 CO, $C_{3}H_{6}$, $SO_{2}$ 산화 반응 활성에 관한 연구)

  • 임재영;김태원;정우식;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 1996
  • The catalysts composed of Pt, Pd and W as active-components, $Al_{2}O_{3}$ and $SiO_{2}$ as supports, were perpared on the honeycomb type substrate and characterized by BET, SEM, TGA, FT-IR and XRD for diesel emission control. CO, $C_{3}H_{6}$, and $SO_{2}$ oxidation was carried out over these catalysts in a fixed bed continuous flow reactor at the temperatures between 100-500.deg.C and reactant gas was composed of 10 vol.% $O_{2}$, 1 vol.% CO, 0.8 vol.% $C_{3}H_{6}$ and 88.2 vol.% $N_{2}$. It was found that under these experimental conditions, the CO, $C_{3}H_{6}$ oxidation activity of Pt-W catalyst was higher than that of any other prepared catalyst, and this catalyst had also a good inhibition effect on $SO_{2}$ oxidation. Also it was show that the influence of $SO_{2}$ on $Al_{2}O_{3}$ was more sever than that of $SO_{2}$ on $SiO_{2}$.

  • PDF

A study of NOx performance for Cu-chabazite SCR catalysts by Sulfur poisoning and desulfation (Cu-Chabazite SCR Catalysts의 황 피독 및 탈황에 의한 NOx 저감 성능에 관한 연구)

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.855-861
    • /
    • 2013
  • Small-pore Cu-chabazite SCR catalysts with high NOx conversion at low temperatures are of interest for marine diesel engines with exhaust temperatures in the range of 150 to $300^{\circ}C$. Unfortunately, fuels for marine diesel engines can contain a high level of sulfur of up to 1.5% by volume, which corresponds to a $SO_2$ level of 500 ppm in the exhaust gases for an engine operating with an A/F ratio of 50:1. This high level of $SO_2$ in the exhaust may have detrimental effects on the NOx performance of the Cu-chabazite SCR catalysts. In the present study, a bench-flow reactor is used to investigate the effects of sulfur poisoning on the NOx performance of Cu-chabazite SCR catalysts. The SCR catalysts were exposed to simulated diesel exhaust gas stream consisted of 500 ppm $SO_2$, 5% $CO_2$, 14% $O_2$, 5% $H_2O$ with $N_2$ as the balance gas at 150, 200, 250 and $300^{\circ}C$ for 2 hours at a GHSV of 30,000 $h^{-1}$. After sulfur poisoning the low-temperature NOx performance of the SCR catalyst is evaluated over a temperature range of 150-$300^{\circ}C$ to determine the extent of the catalyst deactivation. Desulfation is also carried out at 600 and $700^{\circ}C$ for 30 minutes to determine whether it is possible to recover the NOx performance of the sulfur-poisoned SCR Catalysts.

Study on the Reduction of NPS Pollution and GHG Emission from Paddies with SRI Methods (SRI 방법을 적용한 논에서의 비점오염원 및 온실가스 저감효과)

  • Park, Woon-Ji;Lee, Su-In;Yun, Dong-Koun;Kim, Gun-Yeob;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.440-440
    • /
    • 2012
  • 본 연구에서는 수질관리 및 기후변화(온실가스 저감) 등에 부응할 수 있는 SRI 벼재배 방법을 국내 논에 적용하여 농업비점오염원과 온실가스 저감효과를 측정하고 비교하여 SRI의 환경개선효과를 평가하고자 하였다. 시험포는 대조구인 상시담수처리구(관행, 재식거리 $30{\times}15cm$)와 SRI 물관리 처리구로 조성하였다. 각 시험포에는 관개배수시설 및 관개량을 측정할 수 있는 수도계량기, 유출량 측정을 위한 플륨 및 수위계 그리고 온실가스(메탄 및 이산화질소)를 측정하기 위한 아크릴재질의 Chamber를 설치하였다. 관행 및 SRI 시험포에 이앙할 모의 재배품종으로 오대벼를 공시하고 모든 시험포의 경우 1주당 3-5본씩 기계이앙을 실시하였으며, 물관리를 제외한 시비와 제초 등의 영농관리는 동일하게 수행하였다. 메탄($CH_4$)과 아산화질소($N_2O$)는 주 2회, 오전 9시 12시에 60 mL 주사기로 주기적으로 시료를 채취하여 GC로 분석하였다. 그리고 관개기간동안 관개량, 강우량 그리고 강우 유출량을 측정하고 수질시료를 채취하여 오염부하를 산정하였다. SRI 시험포의 SS, $COD_{Cr}$, $COD_{Mn}$, BOD, TN, TP의 총 오염부하량은 각각 583 kg/ha, 210.8 kg/ha, 70.1 kg/ha, 30.7 kg/ha, 56.1 kg/ha, 3.55 kg/ha로서 관행 시험포의 오염부하량에 비해 27.1~46.0%의 오염물질 저감 효과를 보였다. 그리고 각 시험포별 온실가스 메탄과 아산화질소의 총 배출량을 지구온난화잠재력(GWP)으로 환산하여 이산화탄소($CO_2$) 기준으로 산정한 결과, 관행은 14.2 톤/ha 그리고 SRI 물관리 처리구 4.0 톤/ha로 관행 대비 SRI 처리구에서 71.8%의 온실가스 감축효과를 나타내었다. 따라서 SRI 벼재배기술은 논 비점오염부하 및 온실가스 저감을 위한 효과적인 최적영농관리방법인 것으로 판단된다.

  • PDF

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

Effect of Ozone Injection into Exhaust Gas on Catalytic Reduction of Nitrogen Oxides (촉매 공정의 배기가스 질소산화물 저감 성능에 미치는 오존주입의 영향)

  • Yun, Eun-Young;Mok, Young-Sun;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • The ozone injection method was proposed to improve the catalytic process for the removal of nitrogen oxides ($NO_x$). Nitric oxide (NO) in the exhaust gas was first oxidized to nitrogen dioxide ($NO_2$) by ozone produced by dielectric barrier discharge, and then the exhaust gas containing the mixture of NO and $NO_2$ was directed to the catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. A commercially available $V_2O_5-WO_3/TiO_2$ catalyst was used as the catalytic reactor. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added the exhaust gas. The effect of reaction temperature, initial $NO_x$ concentration, feed gas flow rate, and ammonia concentration on the removal of $NO_x$ at various $NO_2$ contents was examined and discussed. The increase in the content of $NO_2$ by the ozone injection remarkably improved the performance of the catalytic reactor, especially at low temperatures. The present ozone injection method appears to be promising for the improvement of the catalytic reduction of $NO_x$.