Browse > Article
http://dx.doi.org/10.7842/kigas.2020.24.4.39

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism  

Cho, Seo-Hee (Department of Aerospace Engineering, Sunchon National University)
Kim, Gyeong-Mo (Department of Aerospace Engineering, Sunchon National University)
Lee, Kee-Man (School of Mechanical and Aerospace Engineering, Sunchon National University)
Publication Information
Journal of the Korean Institute of Gas / v.24, no.4, 2020 , pp. 39-47 More about this Journal
Abstract
Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.
Keywords
flue gas recirculation(FGR); NOx mechanisms; kinetic analysis; thermal NO;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Welch, B. M. Igoe, "Combustion, Fuels and Emissions for Industrial Gas Turbines", Asia Turbomachinery & Pump Symposia, 43rd turbomachinery & 30rd Pump Users Symposia, (2014)
2 M. Rickert, G. Bulat, "Addressing New Requests for Single-Digit $NO_X$", Symposium of IAGT, 17-IAGT-105, (2017)
3 W. Li, Z. Liu, Z. Wang, Y. Xu, J. Wang, "Experimental and theoretical analysis of effects of $N_2$, $O_2$ and Ar in excess air on combustion and NOx emissions of a turbocharged NG engine", Energy Conversion and Management, 97, 253-264, (2015)   DOI
4 S. C. Li, F. A. Williams, "NOx formation in Two-Stage Methane-Air Flames", Combustion and flame, 118, 399-414, (1999)   DOI
5 S. J. Zhu, Q. G. Lyu, J. G. Zhu, J. R. Li, "NO emissions under pulverized char MILD combustion in $O_2/CO_2$ preheated by a circulating fluidized bed: Effect of oxygen-staging gas distribution", Fuel processing Technology, 182, 104-112, (2018)   DOI
6 J. A. Wunning, J. G. Wunning, "Flameless Oxidation to Reduce Thermal NO-formation", Prog. Energy. Combust. Sci., 23, 81-94, (1997)   DOI
7 Y. Tua, A. Zhou, M. Xu, W. Yang, K. B. Siah, P. Subbaiah, "$NO_X$ reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology", Applied Energy, 20, 962-973, (2018)
8 H. K. Kim, Y. M. Kim, S. M. Lee, K. Y.Ahn, "NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology", Proceedings of the Combustion Institute, 31, 3377-3384, (2007)   DOI
9 S. H. Cho, K. M. Lee, "Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx", KIGAS, 23(6), 8-14, (2019)
10 YB. Zeldovich, "The oxidation of nitrogen in combustion and explosions", Acta Physicochimica, 21, 577-628, (1946)
11 P. Glarborg, J. A. Miller, R. J. Kee, "Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-stirred Reactors", Combustion and Flame, 65, 177-202, (1986)   DOI
12 L. Pillier, M. Idir, J. Molet, A. Matynia, S. de Persis, "Experimental study and modelling of NOx formation in high pressure counter-flow premixed $CH_4$/air flames", Fuel, 150, 394-407, (2015)   DOI
13 C. P. Fenimore, "Formation of Nitric Oxide in Premixed Hydrocarbon Flames", Symposium (International) on Combustion, 13(1), 373-380, (1971)
14 P. C. Malte, D. T. Pratt, "The Role of Energy- Releasing Kinetics in $NO_X$ Formation: Fuel- Lean, Jet-Stirred CO-Air Combustion", Combustion Science and Technology, 9, 221-231, (1974)   DOI
15 M. C. Drake, R. J. Blint, "Relative Importance of Nitric Oxide Formation Mechanisms in Laminar Opposed-flow Diffusion Flames", Combustion and Flame, 83, 185-203, (1991)   DOI
16 B. Shi, J. Hu, H. Peng, S. Ishizuka, "Effects of internal flue gas recirculation rate on the $NO_X$ emission in a methane/air premixed flame", Combustion and Flame, 188, 199-211, (2018)   DOI
17 H. Guo, F. Liu, G. J. Smallwood, "A numerical study on $NO_X$ formation in laminar counterflow $CH_4$/air triple flames", Combustion and Flame, 143, 282-298, (2005)   DOI
18 R. J. Kee, J. A. Miller, G. H. Evans, "A Computational Model of The Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames", Proc. Combust. Inst., 22, 1479-1494, (1988)
19 A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, "A Fortran program for computing opposed-flow diffusion flames", Sandia National Laboratories Report, SAND 96-8243, (1997)
20 Y. Ju, H. Guo, K. Maruta, F. Liu, "On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames", J. Fluid Mech., 342, 315-334, (1997)   DOI
21 C.T. Bowman, et al., GRImech 2.11 Mechanism, 1995; (http://www.me.berkeley.edu/gri_ mech/.)
22 "Chemical-Kinetic Mechanisms for Combustion Applications", San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu).
23 E. S. Cho, S. H. Chung, "Numerical evaluation of $NO_X$ mechanisms in methane-air counterflow premixed flames", 23, 659-666, (2009)   DOI
24 J. W. Bozzelli, A. M. Dean, "O + NNH: a possible new route for NOx formation in flames", Int. J. Chem. Kinet.,27, 1097-109, (1995)   DOI
25 G.P. Smith, et al., GRImech 3.0 Mechanism, 1999; (http://www.me.berkeley.edu/gri_mech/.)
26 C. W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Khan, J.W. Hargis, T. Sikes, E. L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S.S. Vasu, H.J. Curran, "An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements" Combustion and Flame, 197, 423-438, (2018)   DOI
27 N. Lamoureux, H. E. Merhubi, L. Gasnot, C. Schoemaecker, P. Desgroux, "Measurements and modelling of HCN and CN species profiles in laminar $CH_4$/$O_2$/$N_2$ low pressure flames using LIF/CRDS techniques. Proc. Combust. Inst., 35, 745-52, (2015)   DOI
28 S. J. Klippenstein, L. B. Harding, P. Glarborg, J. A. Miller, "The role of NNH in NO formation and control", Combustion Science and Technology, 158, 774-789, (2011)
29 P. Glarborga, J. A. Miller, B Ruscicb, S. J. Klippenstein, "Modeling nitrogen chemistry in combustion", Progress in Energy and Combustion Science, 67, 31-68, (2018)   DOI
30 T. Sano, "$NO_2$ Formation in Laminar Flames", Combustion Science and Technology, 29, 261-275, (1982)   DOI
31 T. Sano, "$NO_2$ Formation in the Mixing Region of Hot Burned Gas with Cool Air", Combustion Science and Technology, 38, 129-144, (1984)   DOI
32 D.D. Thomsen, N. M. Laurendeau, "Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed $CH_4$/$O_2$/$N_2$ Flames", NASA/CR PhD thesis, 2000-209804, (1999)
33 M. Nishioka, S. Nakagawa, T. Takeno, "NO emission characteristics of methane-air double flame", Combustion and Flame, 98(1-2), 127-138, (1994)   DOI
34 A. C.A. Lipardi, P. Versailles, G. M.G. Watsonb, G. Bourque, "Experimental and numerical study on NOx formation in $CH_4$-air mixtures diluted with exhaust gas components", Combustion and Flame, 179, 325-337, (2017)   DOI