DOI QR코드

DOI QR Code

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism

대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석

  • Cho, Seo-Hee (Department of Aerospace Engineering, Sunchon National University) ;
  • Kim, Gyeong-Mo (Department of Aerospace Engineering, Sunchon National University) ;
  • Lee, Kee-Man (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • 조서희 (순천대학교 우주항공공학과) ;
  • 김경모 (순천대학교 우주항공공학과) ;
  • 이기만 (순천대학교 기계.우주항공공학부)
  • Received : 2020.06.24
  • Accepted : 2020.08.19
  • Published : 2020.08.31

Abstract

Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

배기가스 재순환(flue gas recirculation, 이하 FGR)은 질소산화물 저감에 효과적인 연소 기법으로 저공해 연소 분야에 다양하게 응용되고 있다. 이전 연구에 이어서 메탄/공기 대향류 예혼합화염에 FGR 기법 적용 시 나타나는 화염의 특성 변화 및 NOx 생성기구를 파악하기 위한 수치해석이 진행되었다. 배출되는 질소산화물(NOx)은 4가지 주요 반응경로(열적 NO, prompt NO, N2H 및 N2O)로 구분하여 배기가스 재순환율에 따른 각 NO 생성률을 상대적으로 나타내었다. 그 결과 열적 NO가 전체 NO 형성에 가장 크게 차지한 반면 N2H의 영향은 미미하였다. 또한, 열적 NO의 기여를 검토하기 위하여 본 연구에 사용된 반응기구(UC San Diego mechanism)를 수정하여 재순환율 증가에 따른 NO 배출지수(EINO)를 비교하였다.

Keywords

References

  1. M. Welch, B. M. Igoe, "Combustion, Fuels and Emissions for Industrial Gas Turbines", Asia Turbomachinery & Pump Symposia, 43rd turbomachinery & 30rd Pump Users Symposia, (2014)
  2. M. Rickert, G. Bulat, "Addressing New Requests for Single-Digit $NO_X$", Symposium of IAGT, 17-IAGT-105, (2017)
  3. W. Li, Z. Liu, Z. Wang, Y. Xu, J. Wang, "Experimental and theoretical analysis of effects of $N_2$, $O_2$ and Ar in excess air on combustion and NOx emissions of a turbocharged NG engine", Energy Conversion and Management, 97, 253-264, (2015) https://doi.org/10.1016/j.enconman.2015.03.079
  4. S. C. Li, F. A. Williams, "NOx formation in Two-Stage Methane-Air Flames", Combustion and flame, 118, 399-414, (1999) https://doi.org/10.1016/S0010-2180(99)00002-4
  5. S. J. Zhu, Q. G. Lyu, J. G. Zhu, J. R. Li, "NO emissions under pulverized char MILD combustion in $O_2/CO_2$ preheated by a circulating fluidized bed: Effect of oxygen-staging gas distribution", Fuel processing Technology, 182, 104-112, (2018) https://doi.org/10.1016/j.fuproc.2018.09.002
  6. J. A. Wunning, J. G. Wunning, "Flameless Oxidation to Reduce Thermal NO-formation", Prog. Energy. Combust. Sci., 23, 81-94, (1997) https://doi.org/10.1016/S0360-1285(97)00006-3
  7. Y. Tua, A. Zhou, M. Xu, W. Yang, K. B. Siah, P. Subbaiah, "$NO_X$ reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology", Applied Energy, 20, 962-973, (2018)
  8. H. K. Kim, Y. M. Kim, S. M. Lee, K. Y.Ahn, "NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology", Proceedings of the Combustion Institute, 31, 3377-3384, (2007) https://doi.org/10.1016/j.proci.2006.08.083
  9. S. H. Cho, K. M. Lee, "Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx", KIGAS, 23(6), 8-14, (2019)
  10. YB. Zeldovich, "The oxidation of nitrogen in combustion and explosions", Acta Physicochimica, 21, 577-628, (1946)
  11. P. Glarborg, J. A. Miller, R. J. Kee, "Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-stirred Reactors", Combustion and Flame, 65, 177-202, (1986) https://doi.org/10.1016/0010-2180(86)90018-0
  12. C. P. Fenimore, "Formation of Nitric Oxide in Premixed Hydrocarbon Flames", Symposium (International) on Combustion, 13(1), 373-380, (1971)
  13. P. C. Malte, D. T. Pratt, "The Role of Energy- Releasing Kinetics in $NO_X$ Formation: Fuel- Lean, Jet-Stirred CO-Air Combustion", Combustion Science and Technology, 9, 221-231, (1974) https://doi.org/10.1080/00102207408960360
  14. M. C. Drake, R. J. Blint, "Relative Importance of Nitric Oxide Formation Mechanisms in Laminar Opposed-flow Diffusion Flames", Combustion and Flame, 83, 185-203, (1991) https://doi.org/10.1016/0010-2180(91)90212-T
  15. L. Pillier, M. Idir, J. Molet, A. Matynia, S. de Persis, "Experimental study and modelling of NOx formation in high pressure counter-flow premixed $CH_4$/air flames", Fuel, 150, 394-407, (2015) https://doi.org/10.1016/j.fuel.2015.01.099
  16. B. Shi, J. Hu, H. Peng, S. Ishizuka, "Effects of internal flue gas recirculation rate on the $NO_X$ emission in a methane/air premixed flame", Combustion and Flame, 188, 199-211, (2018) https://doi.org/10.1016/j.combustflame.2017.09.043
  17. H. Guo, F. Liu, G. J. Smallwood, "A numerical study on $NO_X$ formation in laminar counterflow $CH_4$/air triple flames", Combustion and Flame, 143, 282-298, (2005) https://doi.org/10.1016/j.combustflame.2005.06.004
  18. R. J. Kee, J. A. Miller, G. H. Evans, "A Computational Model of The Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames", Proc. Combust. Inst., 22, 1479-1494, (1988)
  19. A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, "A Fortran program for computing opposed-flow diffusion flames", Sandia National Laboratories Report, SAND 96-8243, (1997)
  20. Y. Ju, H. Guo, K. Maruta, F. Liu, "On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames", J. Fluid Mech., 342, 315-334, (1997) https://doi.org/10.1017/S0022112097005636
  21. "Chemical-Kinetic Mechanisms for Combustion Applications", San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu).
  22. E. S. Cho, S. H. Chung, "Numerical evaluation of $NO_X$ mechanisms in methane-air counterflow premixed flames", 23, 659-666, (2009) https://doi.org/10.1007/s12206-008-1222-y
  23. J. W. Bozzelli, A. M. Dean, "O + NNH: a possible new route for NOx formation in flames", Int. J. Chem. Kinet.,27, 1097-109, (1995) https://doi.org/10.1002/kin.550271107
  24. C.T. Bowman, et al., GRImech 2.11 Mechanism, 1995; (http://www.me.berkeley.edu/gri_ mech/.)
  25. G.P. Smith, et al., GRImech 3.0 Mechanism, 1999; (http://www.me.berkeley.edu/gri_mech/.)
  26. C. W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Khan, J.W. Hargis, T. Sikes, E. L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S.S. Vasu, H.J. Curran, "An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements" Combustion and Flame, 197, 423-438, (2018) https://doi.org/10.1016/j.combustflame.2018.08.006
  27. N. Lamoureux, H. E. Merhubi, L. Gasnot, C. Schoemaecker, P. Desgroux, "Measurements and modelling of HCN and CN species profiles in laminar $CH_4$/$O_2$/$N_2$ low pressure flames using LIF/CRDS techniques. Proc. Combust. Inst., 35, 745-52, (2015) https://doi.org/10.1016/j.proci.2014.05.126
  28. S. J. Klippenstein, L. B. Harding, P. Glarborg, J. A. Miller, "The role of NNH in NO formation and control", Combustion Science and Technology, 158, 774-789, (2011)
  29. P. Glarborga, J. A. Miller, B Ruscicb, S. J. Klippenstein, "Modeling nitrogen chemistry in combustion", Progress in Energy and Combustion Science, 67, 31-68, (2018) https://doi.org/10.1016/j.pecs.2018.01.002
  30. T. Sano, "$NO_2$ Formation in Laminar Flames", Combustion Science and Technology, 29, 261-275, (1982) https://doi.org/10.1080/00102208208923601
  31. T. Sano, "$NO_2$ Formation in the Mixing Region of Hot Burned Gas with Cool Air", Combustion Science and Technology, 38, 129-144, (1984) https://doi.org/10.1080/00102208408923768
  32. D.D. Thomsen, N. M. Laurendeau, "Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed $CH_4$/$O_2$/$N_2$ Flames", NASA/CR PhD thesis, 2000-209804, (1999)
  33. M. Nishioka, S. Nakagawa, T. Takeno, "NO emission characteristics of methane-air double flame", Combustion and Flame, 98(1-2), 127-138, (1994) https://doi.org/10.1016/0010-2180(94)90203-8
  34. A. C.A. Lipardi, P. Versailles, G. M.G. Watsonb, G. Bourque, "Experimental and numerical study on NOx formation in $CH_4$-air mixtures diluted with exhaust gas components", Combustion and Flame, 179, 325-337, (2017) https://doi.org/10.1016/j.combustflame.2017.02.009