• Title/Summary/Keyword: $N_2$ selectivity

Search Result 505, Processing Time 0.027 seconds

Mesh Selectivity of Drift Gill Net for Yellow Croaker, Larimichthys polyactis, in the Coastal Sea of Gageo-do (가거도 인근해역 참조기(Larimichthys polyactis) 유자망의 망목선택성)

  • Kim, Seong-Hun;Park, Seong-Wook;Bae, Jae-Hyun;Kim, Yeong-Hye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.518-522
    • /
    • 2009
  • The mesh selectivity of drift gill net for yellow croaker (Larimichthys polyactis) was examined in field experiments with six different net mesh size (40, 45, 50, 55, 60 and 65 mm) from April to December, 2008 in the northwestern coastal waters of Gageo-do, Korea. The total catch of 8,091 consisted of yellow croaker (n=7,574; 89.5% of total catch), common mackerel (n=162; 4.8%) and other species (n=355; 5.8%). The selectivity curve for the small size yellow croaker was fit by Kitahara's method to the polynomial equation S(R)=exp{($-0.552R^3$+$4.927R^2$-11.591R+9.320)-6.717}. The optimal mesh size for 50% retention for minimum landing size(191mm) of yellow croaker was estimated as 51.1 mm. This is very similar to the current drift net mesh size used in Gageo-do.

The Effect of Sn on Dehydrocyclization of n-Heptane over Pt-Sn/γ-Al2O3 Catalyst (Pt-Sn/γ-Al2O3 촉매상에서 n-Heptane의 탈수소고리화 반응에서 조촉매 주석의 영향)

  • Song, Myeong-Sug;Kim, Moon-Chan;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.411-420
    • /
    • 1991
  • The dehydrocyclization of n-heptane was studied over $Pt-Sn/{\gamma}-Al/_2O_3$ catalysts with varying Sn content in a fixed bed continuous flow reactor. The range of experimental conditions was at the temperature between 450 and $550^{\circ}C$, the pressure $20{\times}10^5-50{\times}10^5Pa$, the contact time 0.09 and 0.27 hr and the $H_2/H.C$. mole ratio 10. The conversion and selectivity of dehydrocyclization increased with increasing temperature, but decreased with increasing pressure. When we use Sn as a promoter, the selectivity of dehydrocyclization changesa a little, but the conversion was increased and the selectivity of isomerization increased a lot. The activation energy of dehydrocyclization of n-heptane was 34.5 kcal/mol over 0.6 wt % Pt-0.6 wt % $Sn/{\gamma}-Al_2O_3$.

  • PDF

Competitive Solvent Extractions of Alkaline Earth Metal Cations by Crown Ether Phosphonic Acid Monoethyl Esters (크라운에테르 포스포닉산 모노에틸 에스테르에 의한 알칼리 토금속 양이온의 경쟁 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • Competitive solvent extraction of alkaline earth metal cations from water into organic solvent containing the carboxylic acid crown ether and analogous crown ether phosphonic acid monoethyl esters were investigated. sym-(n-Decyldibenzo)-16-crown-5xyacetic acid $\underline{1}$ and monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{3}$ are structurally identical except for the ionizable groups. Both of them provide similar extraction behavior in terms of efficiency and selectivity, but monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{3}$ showed higher alkaline earth metals loadings at acidic or neutral media. Monoethylsym-(n-octyldibenzo)-16-rown-5-oxymethylphosphonic acid $\underline{2}$ showed better selectivity and alkaline earth metals loading than did the analogous sym-(n-octyldibenzo)-16-crown-5-oxymethyldiphosphonic acid $\underline{6}$.

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

Selection of the Best Oxygen Carrier for Chemical Looping Combustion in a Bubbling Fluidized Bed Reactor (기포유동층에서 케미컬루핑 연소시스템을 위한 최적 산소전달입자 선정)

  • Kim, Hana;Kim, Jung-Hwan;Yoon, Joo-Young;Lee, Doyeon;Baek, Jeom-In;Ryu, Ho-Jung
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • The reduction reaction characteristics and physicochemical properties were studied for the selection of oxygen carrier, which is the core of the chemical looping combustion (CLC) technology. Fuel conversion and $CO_2$ selectivity of oxygen carrier according to the concentration of reducing gas and the reduction temperature using three kinds of oxygen carrier (SDN70, N018-R2, N016-R4) were measured and compared. In addition, Attrition Index (AI) and BET surface area were measured to analyze the attrition resistance and the surface characteristics of the oxygen carrier. As a result, it was confirmed that all three kinds of oxygen carrier were suitable for use in chemical roofing combustion system, and the best particle was determined to be N016-R4.

A Study of the Effect of the Permeability and Selectivity on the Performance of Membrane System Design (분리막 투과도와 분리도 인자의 시스템 설계 효과 연구)

  • Shin, Mi-Soo;Jang, Dongsoon;Lee, Yongguk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.656-661
    • /
    • 2016
  • Manufacturing membrane materials with high selectivity and permeability is quite desirable but practically not possible, since the permeability and selectivity are usually inversely proportional. From the viewpoint of reducing the cost of $CO_2$ capture, module performance is even more important than the performance of membrane materials itself, which is affected by the permeance of the membrane (P, stagecut) and selectivity (S). As a typical example, when the mixture with a composition of 13% $CO_2$ and 87% of $N_2$ is fed into the module with 10% stage cut and selectivity 5, in the 10 parts of the permeate, $CO_2$ represents 4.28 parts and $N_2$ represents 5.72 parts. In this case, the $CO_2$ concentration in the permeate is 42.8% and the recovery rate of $CO_2$ in this first separation appears as 4.28/13 = 32.9%. When permeance and selectivity are doubled, however, from 10% to 20% and from 5 to 10, respectively, the $CO_2$ concentration in the permeant becomes 64.5% and the recovery rate is 12.9/13 = 99.2%. Since in this case, most of the $CO_2$ is separated, this may be the ideal condition. For a given feed concentration, the $CO_2$ concentration in the separated gas decreases if permeance is larger than the threshold value for complete recovery at a given selectivity. Conversely, for a given permeance, increasing the selectivity over the threshold value does not improve the process further. For a given initial feed gas concentration, if permeance or selectivity is larger than that required for the complete separation of $CO_2$, the process becomes less efficient. From all these considerations, we can see that there exists an optimum design for a given set of conditions.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Liquid Membrane Permeation of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction

  • Kim, Su-Jin;Kang, Ho-Cheol;Kim, Yong-Shik;Jeong, Hwa-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1143-1148
    • /
    • 2010
  • We investigated the separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction comprising four kinds of NHC [indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)], three kinds of bicyclic aromatic compound (BAC) [1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), dimethylnaphthalene (DMN) mixture with ten structural isomers (DMNs; regarded as one component)], biphenyl (Bp) and phenyl ether (Pe) by liquid membrane permeation (LMP). A batch-stirred tank was used as the permeation unit. An aqueous solution of saponin and n-hexane were used as the liquid membrane and the outer oil phase, respectively. Yield and selectivity of individual NHC was much larger than that of BAC, Bp and Pe. Increasing the initial mass fraction of the saponin to the membrane solution ($C_{sap,0}$) and the initial volume fraction of O/W emulsion to total liquid in a stirred tank (${\phi}_{OW,0}$) resulted in deteriorating the yield of individual NHC, but increasing the stirring speed (N) resulted in improving the yield of each NHC. With increasing $C_{sap,0}$, the selectivity of each NHC based on DMNs increased. Increasing ${\phi}_{OW,0}$ and N resulted in decreasing the selectivity of individual NHC based on DMNs. At an experimental condition fixed, the sequence of the yield and selectivity in reference to DMNs for each NHC was Q > Qu = iQ > In. Furthermore, we compared LPM method with methanol extraction method in view of the separation efficiency (yield, selectivity) of NHC.

Separation of Hydrogen-Nitrogen Gases by PDMS-NaA zeolite Mixed Matrix Membranes (PDMS-NaA zeolite 혼합기지분리막에 의한 수소-질소 분리)

  • Kang, Tae Beom;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.295-300
    • /
    • 2015
  • PDMS-NaA zeolite membranes were prepared by adding 0~40 wt% NaA zeolite. Based on SEM observation, NaA zeolite was dispersed in the PDMS-NaA zeolite membranes with $2{\sim}5{\mu}m$. The permeabilities of $H_2$ and $N_2$ gases through PDMS-NaA zeolite membranes increased as NaA zeolite contents increased and $H_2$ gas had better permeabilities than $N_2$. The selectivity ($H_2/N_2$) of PDMS-NaA zeolite membranes increased as NaA zeolite contents increased.

Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process (포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구)

  • Kim, Dong Woo;Heo, Hoon;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, the supercritical carbon dioxide ($scCO_2$)/ n-butyl acetate (n-BA) co-solvent system was employed to remove an unexposed negative photoresist (PR) from the surface of a silicon wafer. In addition, the selectivity of the $scCO_2$/n-BA co-solvent system was confirmed for the unexposed and exposed negative PR. Optimum conditions for removal of the unexposed PR were obtained from various conditions such as pressure, temperature and n-BA ratio. The n-BA was highly soluble in $scCO_2$ without cloud point and phase separation in mostly experimental conditions. However, the $scCO_2$/n-BA co-solvent was phase separated at 100 bar, above $80^{\circ}C$. The unexposed and exposed PR was swelled in $scCO_2$ solvent at all experimental conditions. The complete removal of unexposed PR was achieved from the reaction condition of 160 bar, 10 min, $40^{\circ}C$ and 75 wt% n-BA in $scCO_2$, as measured by ellipsometry. The exposed photoresist showed high stability in the $scCO_2$/n-BA co-solvent system, which indicated that the $scCO_2$/n-BA co-solvent system has high selectivity for the PR removal in photo lithograph process. The $scCO_2$/n-BA co-solvent system not only prevent swelling of exposed PR, but also provide efficient and powful performance to removal unexposed PR.