DOI QR코드

DOI QR Code

기포유동층에서 케미컬루핑 연소시스템을 위한 최적 산소전달입자 선정

Selection of the Best Oxygen Carrier for Chemical Looping Combustion in a Bubbling Fluidized Bed Reactor

  • 투고 : 2017.10.02
  • 심사 : 2017.11.04
  • 발행 : 2018.03.30

초록

순산소 연소 기술 중 $CO_2$ 회수 비용 절감 효과가 가장 우수한 케미컬루핑연소(chemical looping combustion, CLC) 기술의 핵심인 산소전달입자의 선정을 위해 환원반응 특성 및 물리화학적 특성에 대한 연구를 진행하였다. 세 종류의 산소전달입자(SDN70, N018-R2, N016-R4)를 대상으로 기포유동층 반응기에서 환원반응기체의 농도 및 환원 반응 온도 변화에 따른 산소전달입자의 연료전화율(fuel conversion)과 $CO_2$ 선택도($CO_2$ selectivity)를 측정 및 비교 분석하였다. 또한 산소전달입자의 마모손실 정도 및 입자의 표면 특성을 분석하기 위해 내마모도(Attrition Index, AI) 및 BET surface area를 측정하였다. 결과적으로 세 종류의 산소전달입자 모두 케미컬루핑연소 시스템에 활용하기 적합함을 확인하였으며, 가장 우수한 입자는 N016-R4로 판단되었다.

The reduction reaction characteristics and physicochemical properties were studied for the selection of oxygen carrier, which is the core of the chemical looping combustion (CLC) technology. Fuel conversion and $CO_2$ selectivity of oxygen carrier according to the concentration of reducing gas and the reduction temperature using three kinds of oxygen carrier (SDN70, N018-R2, N016-R4) were measured and compared. In addition, Attrition Index (AI) and BET surface area were measured to analyze the attrition resistance and the surface characteristics of the oxygen carrier. As a result, it was confirmed that all three kinds of oxygen carrier were suitable for use in chemical roofing combustion system, and the best particle was determined to be N016-R4.

키워드

참고문헌

  1. DOE/NETL, "Carbon Dioxide Capture and Storage RD&D Roadmap," (2010).
  2. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan. P., and Diego, L. F., "Progress in Chemical Looping Combustion and Reforming Technology," Prog. Energy Combust., 38(2), 215-282 (2012). https://doi.org/10.1016/j.pecs.2011.09.001
  3. Guo, Q., Hu, X., Liu, Y., Jia, W., Yang, M., Wu, M., Tian, H., and Ryu, H. J., "Coal Chemical-looping Gasification of Ca-based Oxygen Carriers Decorated by CaO," Powder Technol, 275, 60-68 (2015). https://doi.org/10.1016/j.powtec.2015.01.061
  4. Ryu, H. J., Kim, K. S., Park, Y. S., and Park, M. H., "Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical looping Combustor in a Batch Type Fluidized Bed Reactor," Trans. Korean Soc. Hydro. Energy, 20(2), 151-160 (2009).
  5. Fu, C., and Gundersen, T., "Using Exergy Analysis to Reduce Power Consumption in Air Separation Units for Oxy-Combustion Processes," Energy, 44, 60-68 (2012). https://doi.org/10.1016/j.energy.2012.01.065
  6. Ryu, H. J., Lim, N. Y., Bae, D. H., and Jin, G. T., "Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier Particle for Chemical Looping Combustor," Hwahak Konghak, 41(5), 624-631 (2003).
  7. Abad, A., Mattisson, T., Lyngfelt, A., and Johansson, M., "The use of Iron Oxide as Oxygen Carrier in a Chemical-Looping Reactor," Fuel, 86, 1021-1035 (2007). https://doi.org/10.1016/j.fuel.2006.09.021
  8. Kim, H., Lee, D. H., Baek, J. I., and Ryu, H. J., "Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss," Trans. Korean Soc. Hydro. Energy, 27(4), 404-411 (2016). https://doi.org/10.7316/KHNES.2016.27.4.404
  9. Ryu, H. J., Park, Y., Lee, S. Y., Jo, S. H., Shun. D., and Baek, J. I., "$CH_4$ Combustion Characteristics of Oxygen Carrirs in a Bubbling Fluidized Bed," Trans. Korean Soc. Hydro. Energy, 27(5), 581-588 (2016). https://doi.org/10.7316/KHNES.2016.27.5.581
  10. Yoon, J. Y., Bae, D. H., Baek, J. I., and Ryu, H. J., "Reduction Characteristics of Oxygen Carriers in a Pressurized Bubbling Fluidized Bed," Trans. Korean Soc. Hydro. Energy, 27(5), 589-596 (2016). https://doi.org/10.7316/KHNES.2016.27.5.589
  11. Kim, H., Lee, D. H., Bae, D. H., Shun. D., Baek, J. I., and Ryu, H. J., "Comparison of Reduction Reactivity of New Oxygen Carriers for Chemical Looping Combustion System in a Bubbling Fluidized Bed," Trans. Korean Soc. Hydro. Energy, 28(5), 554-560 (2017).
  12. Baek, J. I., Yang, S. R., Eom, T. H., Lee, J. B., and Ryu, C. K., "Effect of MgO Addition on the Physical Properties and Reactivity of the Spray Dried Oxygen Carriers Prepared with a High Content of NiO and $Al_2O_3$," Fuel, 144, 317-326 (2015). https://doi.org/10.1016/j.fuel.2014.11.035
  13. Baek, J. I., Jo, H. G., Eom, T. H., Lee, J. B., and Ryu, H. J., "The Effect of CBB (CaO.BaO.$Ba_2O_3$) Addition on the Physical Properties and Oxygen Trasfer Reactivity of Nio-Based Oxygen Carriers for Chemical Looping Combustion," Trans. Korean Soc. Hydro. Energy, 27(1), 95-105 (2016). https://doi.org/10.7316/KHNES.2016.27.1.095
  14. Ryu, H. J., Lee, D. H., Lee, S. Y., and Jin, G. T., "Attrition Characteristics of WGS Catalysts for SEWGS System," Trans. Korean Soc. Hydro. Energy, 25(2), 122-130 (2014). https://doi.org/10.7316/KHNES.2014.25.2.122
  15. Kukade, S., Kumar, P., Rao, P., and Choudary, N., "Comparative Study of Attrition Measurements of Commercial FCC Catalysts by ASTM Fluidized Bed and Jet Cup Test Methods," Powder Technol., 301, 472-477 (2016). https://doi.org/10.1016/j.powtec.2016.06.040
  16. Cabello, A., Dueso, C., Garcia-Labiano, F., Gayan P., Abad, A., Diego, L. F., and Adanez, J., "Performance of a Highly Reactive Impregnated $Fe_2O_3$/$Al_2O_3$ Oxygen Carrier with $CH_4$ and $H_2S$ in a 500 Wth CLC Unit," Fuel, 121, 117-125 (2014). https://doi.org/10.1016/j.fuel.2013.12.027