DOI QR코드

DOI QR Code

Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process

포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구

  • Kim, Dong Woo (Department of Display & Engineering, Pukyong National University) ;
  • Heo, Hoon (Department of Display & Engineering, Pukyong National University) ;
  • Lim, Kwon Teak (Department of Display & Engineering, Pukyong National University)
  • 김동우 (부경대학교 융합디스플레이공학과) ;
  • 허훈 (부경대학교 융합디스플레이공학과) ;
  • 임권택 (부경대학교 융합디스플레이공학과)
  • Received : 2017.06.13
  • Accepted : 2017.08.01
  • Published : 2017.12.31

Abstract

In this study, the supercritical carbon dioxide ($scCO_2$)/ n-butyl acetate (n-BA) co-solvent system was employed to remove an unexposed negative photoresist (PR) from the surface of a silicon wafer. In addition, the selectivity of the $scCO_2$/n-BA co-solvent system was confirmed for the unexposed and exposed negative PR. Optimum conditions for removal of the unexposed PR were obtained from various conditions such as pressure, temperature and n-BA ratio. The n-BA was highly soluble in $scCO_2$ without cloud point and phase separation in mostly experimental conditions. However, the $scCO_2$/n-BA co-solvent was phase separated at 100 bar, above $80^{\circ}C$. The unexposed and exposed PR was swelled in $scCO_2$ solvent at all experimental conditions. The complete removal of unexposed PR was achieved from the reaction condition of 160 bar, 10 min, $40^{\circ}C$ and 75 wt% n-BA in $scCO_2$, as measured by ellipsometry. The exposed photoresist showed high stability in the $scCO_2$/n-BA co-solvent system, which indicated that the $scCO_2$/n-BA co-solvent system has high selectivity for the PR removal in photo lithograph process. The $scCO_2$/n-BA co-solvent system not only prevent swelling of exposed PR, but also provide efficient and powful performance to removal unexposed PR.

본 연구에서는 초임계 이산화탄소/n-butyl acetate ($scCO_2$/n-BA) 공용매를 사용하여 네거티브형 포토레지스트(PR)를 제거하는 실험을 진행하였다. $scCO_2$와 n-BA의 용해도 평가를 통해 n-BA가 $scCO_2$와 균일하게 섞이는 조건을 실험적으로 측정하였다. 다양한 실험 변수를 조정하여 포토레지스트 제거 실험을 진행하였고, 미노광 포토레지스트 제거에 대한 최적의 조건을 확립하였다. 또한, 노광된 PR과 미노광 PR의 제거율을 비교하여 $scCO_2$/n-BA 공용매의 선택적 제거 성능을 확인하였다. 노광된 PR은 $scCO_2$/n-BA 공용매 환경에서 매우 안정적으로 존재함을 관찰하였고, 미노광 PR은 160 bar, $40^{\circ}C$, 75 wt% n-BA 이상의 농도에서 완전히 제거됨을 확인하였다. $scCO_2$/n-BA 공용매 시스템은 노광 PR과 미노광 PR 사이의 높은 선택성을 제공할 수 있으며, 네거티브 PR의 리소그래피 공정에서 높은 신뢰성을 부여할 것으로 기대된다.

Keywords

References

  1. O'Shea, K. E., Kirmse, K. M., Fox, M. A., and Johnston, K. P., "Polar and Hydrogen-Bonding Interactions in Supercritical Fluids. Effects on the Tautomeric Equilibrium of 4-(phenylazo)-1-naphthol," J. Phys. Chem., 95, 7863-7867 (1991). https://doi.org/10.1021/j100173a057
  2. Campbell, M. L., Apodaca, D. L., Yates, M. Z., McCleskey, T. M., and Birnbaum, E. R., "Metal Extractionfrom Heterogeneous Surfaces Using Carbon Dioxide Microemulsions," Langmuir, 17, 5458-5463 (2001). https://doi.org/10.1021/la0104166
  3. Carbonell, R. G., DeSimone, J. M., and Novick, B. J., "Method for Meniscus Coating with Liquid Carbon Dioxide," U. S. Patent 6,083,565 (2000).
  4. Cooper, A. I., Wood, C. D., and Holmess, A. B., "Synthesis of Well-Defined Macroporous Polymer Monoliths by Sol-Gel Polymerization in Supercritical $CO_2$," Ind. Eng. Chem. Res., 39, 4741-4744 (2000). https://doi.org/10.1021/ie000159k
  5. Hwang, H. S., Yuvaraj, H., Kim, W. K., Lee, W. K., Gal, Y. S., and Lim, K. T., "Dispersion Polymerization of MMA in Supercritical $CO_2$ Stabilized by Random Copolymers of 1H, 1H-Perfluorooctyl Methacrylate and 2-(Dimethylaminoethyl Methacrylate)," J. Polym. Sci. : Part A: Polym. Chem., 46, 1365-1375 (2007).
  6. Ganapathy, H. S., Park, S. Y., Lee, W. K., Park, J. M., and Lim, K. T., "Polymeric Nanoparticles from Macroscopic Crystalline Monomers by Facile Solid-State Polymerization in Supercritical $CO_2$," J. Supercrit. Fluids, 51, 264-269 (2009). https://doi.org/10.1016/j.supflu.2009.08.016
  7. Shah, P. S., Holmes, J. D., Doty, R. C., Johnston, K. P., and Korgel, B. A., "Steric Stabilization of Nanocrystals in Supercritical $CO_2$ Using Fluorinated Ligands," J. Am. Chem. Soc., 122, 4245-4246 (2000). https://doi.org/10.1021/ja9943748
  8. Shah, P. S., Husain, S., Johnston, K. P., and Korgel, B. A., "Nanocrystal Arrested Precipitation in Supercritical Carbon Dioxide," J. Phys. Chem. B, 105, 9433-9440 (2001). https://doi.org/10.1021/jp011815c
  9. Motiei, M., Hacohen, Y. R., Moreno, J. C., and Gedanken, A., "Preparing Carbon Nanotubes and Nested Fullerenes from Supercritical $CO_2$ by a Chemical Reaction," J. Am. Chem. Soc., 123, 8624-8625 (2001). https://doi.org/10.1021/ja015859a
  10. Sun, Y. P., Atorngitjawat, P., and Meziani, M. J., "Preparation of Silver Nanoparticles via Rapid Expansion of Water in Carbon Dioxide Microemulsion into Reductant Solution," Langmuir, 17, 5707-5710 (2001). https://doi.org/10.1021/la0103057
  11. DeSimone, J. M., Romack, T. J., Betts, D. E., and Mcclain, J. B., "Cleaning Process Using Carbon Dioxide as a Solvent and Employing Molecularly Engineered Surfactants," U. S. Patent 5,866,005 (1999).
  12. Khanpour, R., Kouhsar, M. R. S., and Esmaeilzadeh, F., "Removal of Contaminants from Polluted Drilling Mud using Supercritical Carbon Dioxide Extraction," J. Supercrit. Fluids, 88, 1-7 (2014). https://doi.org/10.1016/j.supflu.2014.01.004
  13. Jones, C. A., Zweber, A., Deyoung, J. P., McClain, J. B., Carbonell, R., and DeSimone, J. M., "Applications of "Dry" Processing in the Microelectronics Industry Using Carbon Dioxide," Crit. Rev. Solid. State, 29, 97-109 (2004). https://doi.org/10.1080/10408430490888968
  14. Weibel, G. L., and Ober, C. K., "An Overview of Supercritical $CO_2$ Applications in Microelectronics Processing," Microelectronic Eng., 65, 145-152 (2003). https://doi.org/10.1016/S0167-9317(02)00747-5
  15. Kim, D. H., Lim, E. S., and Lim, K. T., "Efficient Stripping of High-Dose Ion-Implanted Photoresist in Supercritical Carbon Dioxide," Clean Technol., 17, 300-305 (2011).
  16. Lee, M. Y., Do, K. M., Ganapathy, H. S., Lo, Y. S., Kim, J. J., Choi, S. J., and Lim, K. T., "Surfactant-Aided Supercritical Carbon Dioxide Drying for Photoresists to Prevent Pattern Collapse," J. Supercrit. Fluids, 42, 150-156 (2007). https://doi.org/10.1016/j.supflu.2006.12.014
  17. Hwang, H. S., Bae, J. H., Jung, J. M., and Lim, K. T., "The Sacrificial Oxide Etching of Poly-Si Cantilevers Having High Aspect Ratios using Supercritical $CO_2$," Microelectronic Eng., 87, 1696-1700 (2010). https://doi.org/10.1016/j.mee.2009.12.076
  18. Heyns, M., Mertens, P., Ruzyllo, J., and Leeman, M., "Advanced Wet and Dry Cleaning Coming Together for Next Generation," Solid State Technol., 42, 37 (1999).
  19. Abe, H., Iwamoto, H., Toshima, T., Iino, T., and Gale, G. W., "Novel Photoresist Stripping Technology using Ozone/Vaporized Water Mixture," IEEE Trans. Semicond. Manuf., 16, 401-408 (2003). https://doi.org/10.1109/TSM.2003.815620
  20. Clark, P. G., and Christenson, K. K., "Non-Damaging Chemical Photoresist Strip Process for Copper/Low-k Interconnects," Adv. Semicond. Manuf. Conf., (2005).
  21. Metselaar, J. W., Kuznetsov, V. I., and Zhidkov, A. G., "Photoresist Stripping in Afterglow of Ar-$O_2$ Microwave Plasma," J. Appl. Phys., 75, 4910 (1994). https://doi.org/10.1063/1.355779
  22. Choi, K., Ghosh, S., Lim, J., and Lee, C. M., "Removal Efficiency of Organic Contaminants on Si Wafer by Dry Cleaning using UV/$O_3$ and ECR Plasma," Appl. Surf. Sci., 206, 355-364 (2003). https://doi.org/10.1016/S0169-4332(02)01215-1
  23. Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. H., and Yanovitskaya, Z. S., "Low Dielectric Constant Materials for Microelectronics," J. Appl. Phys., 93, 8793-8841 (2003). https://doi.org/10.1063/1.1567460
  24. Felix, N. M., Tsuchiya, K., and Ober, C. K., "High-Resolution Patterning of Molecular Glasses UsingSupercritical Carbon Dioxide," Adv. Mater., 18, 442-446 (2006). https://doi.org/10.1002/adma.200501802
  25. Pham, V. Q., Ferris, R. J., Hamad, A., and Ober, C. K,. "Positive-Tone Photoresist Process for Supercritical Carbon Dioxide Development," Chem. Mater., 15, 4893-4895 (2003). https://doi.org/10.1021/cm034343i
  26. Hwang, H. S., Zakhidov, A. A., Lee, J. K., Andre, X., DeFranco, J. A., Fong. H. H., Holmes, A. B., Malliaras, G. G., and Ober, C. K., "Dry Photolithographic Patterning Process for Organic Electronic Devices Using Supercritical Carbon Dioxide as a Solvent," J. Mater. Chem., 18, 3087-3090 (2008) https://doi.org/10.1039/b802713g
  27. Christopher, F. K., and McHugh, M. A., "Phase Behavior of Polymers in Supercritical Fluid Solvents," Chem. Rev., 99, 565-602 (1999). https://doi.org/10.1021/cr970046j
  28. Ghaziaskar, H. S., and Nikravesh, M., "Solubility of Hexanoic Acid and Butyl Acetate in Supercritical Carbon Dioxide," Fluid Phase Equilibria, 206, 215-221 (2003). https://doi.org/10.1016/S0378-3812(02)00319-9