• Title/Summary/Keyword: $N_{2}$ gas

Search Result 3,456, Processing Time 0.026 seconds

Deposition Characteristic of InNx Films by Reactive DC Magnetron Sputtering (반응성 직류 스퍼터법에 의한 질화 인듐 박막의 제막 특성)

  • 송풍근;류봉기;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.739-745
    • /
    • 2003
  • In $N_{x}$ films were deposited on soda-lime glass without substrate heating by reactive dc magnetron sputtering using indium (In) metal target. Depositions were carried out under various total gas pressures ( $P_{tot}$) of mixture gases (Ar+$N_2$ or He+$N_2$). He gas was introduced to $N_2$ gas in order to enhance the reactivity of nitrogen on film surface by the "penning ionization". Plasma impedance decreased greatly when 20% or more introduced the $N_2$ gas. This is due to the In $N_{x}$ layers formed on target surface because a secondary electron emission rate of InN is small compared with In metal. XRD patterns of the films revealed that <001> preferred oriented polycrystalline In $N_{x}$ films, where the crystallinity of the films was improved with decrease of $P_{tot}$ and with increase of $N_2$ flow ratio. The improvement of the crystallinity and stoichimetry of the In $N_{x}$ films were considered to be caused by an increase in the activated nitrogen radicals and also by an increase in the kinetic energy of sputtered In atoms arriving at growing film surface, which should enhance the chemical reaction and surface migration on the growing film surface, respectively. Furthermore, the films deposited using mixture gases of He+$N_2$ showed higher crystallinity compared with the film deposited by the mixture gases of Ar+$N_2$.$.EX>.

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering (가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성)

  • Lee, Soyul;Choi, Jae-Hyeong;Han, Yoonsoo;Lee, Sung-Min;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.

Reduction of Oxygen Concentration in the LPCVD Polysilicon Films Deposited by $N_2$ Gas-Flow Method ($N_2$ 가스 Flow에 의한 LPCVD 방법으로 증착된 다결정 실리콘 박막의 산소농도 저하)

  • An, Seung-Jung;Jeong, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.269-273
    • /
    • 1999
  • Polycrystalline silicon films are generally deposited by LPCVD, utilizing the thermal decomposition of $SiH_4$ gas. When silicon wafers are loaded into the furnace in order to reduce oxygen concentration of the films, we flow 20slm N, gas from top to bottom of the furnace, and then deposit films of $1000\AA$ thickness to measure oxygen concen­tration by SIMS. As a consequence of SIMS, we obtain oxygen concentration in films lower about 30 times than that of films deposited with 20slm $N_2$ gas-flow through the short injector in the hatch of furnace. In our long injector system, we estimate a reproducibility by uniformity, particle, and Rs of the deposited films.

  • PDF

Electrical properties of AZO transparent conductive oxide with substrate bias and $H_2$ annealing (DC 마그네트론 스퍼트링법으로 제조한 ZnO:N,Al 박막의 전기적 특성에 관한연구)

  • Liu, Yan-Yan;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.303-304
    • /
    • 2008
  • Al, N-codoped ZnO(ZnO:N,Al) thin films were deposited on n-type Si(100) substrate at $450^{\circ}C$ with various conditions of ambient gas$(N_2:O_2)$ by DC magnetron sputtering method using ZnO:$Al_2O_3$(2wt%) as a target, and then were annealed at 500, 700, $800^{\circ}C$ in $N_2$ gas for one hour. XRD patterns showed that all of the ZnO:N,Al thin films annealed at $80^{\circ}C$ grew with two peaks, which means poor crystallinity of the thin films deposited. Hall effects in Van der Pauw configuration proved that after annealing the films deposited showed low resistivity and high carrier concentration. While the films annealed at $800^{\circ}C$ showed low resistivity of $\sim10^{-2}\Omega$ cm and high carrier concentration of $\sim10^{19}cm^{-3}$.

  • PDF

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

Properties of AlSi etching using the MERIE type reactor (MERIE형 반응로를 이용한 AlSi의 식각 특성)

  • 김창일;김태형;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.188-195
    • /
    • 1996
  • The AlSi etching process using the MERIE type reactor carried out with different process parameters such as C1$_{2}$ and N$_{2}$ gas flow rate, RF power and chamber pressure. The etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. As the N2 gas flow rate is increased, the AlSi etch rate is decreased and uniformity has remained constant within .+-.5%. The etch rate is increased and uniformity is decreased, according to increment of the C1$_{2}$ gas flow rate, RF power and chamber pressure. Selective etching of TEOS with respect to AlSi is decreased as the RF power is increased while it is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, on the other hand, selective etching of photoresist with respect to AlSi is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, it is decreased as the N$_{2}$ gas flow rate is increased.

  • PDF

Fabrication of ZnO thin film gas sensor for detecting $(CH_3)_3N$ gas ($(CH_3)_3N$ 가스 감지용 ZnO 박막 가스 센서의 제조)

  • 신현우;박현수;윤동현;홍형기;권철한;이규정
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromaching techniques. The sensing material used to detect the offensive trimethylarnine ((CH$_{3}$)$_{3}$N) gas is 6 wt% $Al_{2}$O$_{3}$-doped, 1000.angs.-thick ZnO deposited by r. f. magnetron sputtering. The optimum operating temperature of the sensor is 350.deg.C and the corresponding heater power is about 85mW. Excellent thermal insulation is achieved by the use of a double-layer structure of 0.2.mu.m -thick silicon nitride and 1.4.mu.m-thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric pressure chemical vapor deposition(APCVD), respectively. The sensors are mechanically stable enough to endure at least 43, 200 heat cycles between room temperature and 350.deg. C.

  • PDF

A Study of the Growth Rate of TiN Film Produced by Using TDEAT (TDEAT TiN 증착률에 영향을 미치는 인자들에 대한 연구)

  • 최정환;이재갑;박상준;김재호;홍해남;윤의중;김좌연
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.214-220
    • /
    • 1998
  • We have studied the factors influencing the growth rate of TiN deposited from TDEAT using a bubbler. The growth rate of TiN was primarily dependent on the bubbler temperature, deposition temperature, gas delivery line conductance and carrier gases. In addition, the heating of the gas line through which carrier gas was delivered to the bubbler increased the growth rate slightly. Also heating of the delivery gas line between the bubbler and the chamber caused the increase of the growth rate of TiN, Showing the Arrehenius behaviour with the activation energy of 0.2 eV.

  • PDF

Effect of $N_2$ back shielding gas on the property change of GTA weldment (질소 이면보호가스 적용성에 관한 연구)

  • 백광기;안병식
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.12-21
    • /
    • 1987
  • To investigate the suitability of nitrogen gas as an internal purging gas, various properties of GTA welded joints of duplex, 316L stainless steel, Cu-Ni alloy pipe using nitrogen purging gas were evaluated with reference to onew purged with argon gas. Mechanical properties evaluated by the tensile, bending test, and hardness value of welded joints with nitrogen gas purging did not show any difference those with argon gas. General and local corrosion rates of each welded joint prepared by nitrogen gas purging also showed no difference with those prepared by argon gas. Based on the present test results it is confirmed that nitrogen is a suitable purging gas for GTA welding of stainless steels and nonferrous piping systems, which can be used at lower cost instead of argon.

  • PDF

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.