• Title/Summary/Keyword: $NH_3$-SCR

Search Result 161, Processing Time 0.034 seconds

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction (NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향)

  • Park, Ji Hye;Cho, Gwang Hee;Hwang, Ra Hyun;Baek, Jeong Hun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

Experimental Verification of Adsorption Rate Feedback Control Strategy for Automotive Urea-SCR DeNOX System (실차 실험을 통한 승용 디젤엔진의 Urea-SCR을 위한 암모니아 흡장률 피드백 제어 분사전략 검증)

  • Shin, Byeonguk;Park, Jooyoung;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.397-407
    • /
    • 2017
  • In this study, a SCR system is employed to selectively reduce $NO_X$, which is a major cause of environmental pollution and issues in diesel engines. In particular, this paper focuses on the combination of feedforward injection strategies, depending on the NO/$NO_X$ ratio, and feedback injection control, using $NH_3$ coverage ratio, based on a SCR model. A 2.2 L passenger diesel engine, which is equipped with a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF), was used in the experiments. The developed control algorithm is implemented on a real-time computer with injection control algorithm. By analyzing the $NO_X$ emission measurement, the performance of the proposed injection control algorithm is verified.

Non-thermal Plasma and $NH_3$ SCR Hybrid Process for Treating Diesel Engine Exhaust (저온 플라즈마와 $NH_3$ SCR 복합공정을 이용한 디젤엔진 배기가스의 NOx 저감 기술)

  • Cha, Min-Suk;Lee, Jae-Ok;Kim, Yong-Ho;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.89-95
    • /
    • 2002
  • A hybrid De- NOx technique of non-thermal plasma and $NH_3$ SCR process has been investigated to remove NOx from 300 hp marine engine exhaust under the low temperature conditions, i.e. $100-200^{\circ}C$. Fundamental investigation with Diesel-like simulant gas was also conducted. The performance of the present technique has been demonstrated by treating real diesel exhaust gases, in which high contents of soot, water vapor, $SO_2$, NOx, and unburned HC are included. Detailed engineering data for evaluating the feasibility of the technique are provided in the present investigation.

  • PDF

Characteristic comparison of sensing materials in mixed potential type NH3 gas sensors for urea-SCR DeNOx system in diesel engine (디젤 엔진 Urea-SCR DeNOx 시스템용 혼합전위 방식 암모니아 가스 센서의 감지물질 특성 비교)

  • Choi, An-Gi;Yang, Young-Chang;Koo, Bon-Chul;Park, C.O.
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.176-183
    • /
    • 2010
  • It is considered that the urea injection DeNOx SCR(selective catalytic reduction) system is the only promising method to satisfy the worldwide NOx emission standards. As for the theoretical aspect, reactants of NO and $NO_2$ with $NH_3$ produce $H_2O$, $N_2$ and $O_2$ which do not harm human beings and environmental as well. The realization of maximum NOx conversion (without using a post oxidation catalyst) is only possible with closed loop controlled urea dosing. It means built-in $NH_3$ gas sensor have to be developed for detecting accurate $NH_3$ concentration for the feedback system. Using YSZ(yttria-stabilized zirconia) as a solid state electrolyte and $In_2O_3$ as a sensing material, this paper aims to study dependable $NH_3$ gas sensor for the promising solution of DeNOx technology, which have a reproducible electric output signal, a high sensitivity and fast response.

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts (구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성)

  • Ha, Ho-Jung;Hong, Ju-Hwan;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

The Activity of Standard and Fast SCR over V-based Catalysts Supported on Various TiO2 (다양한 TiO2에 담지된 바나디아 촉매의 표준 및 빠른 SCR 활성)

  • Ji Eun Jeong;Yeon Jeong Jo;Inyoung Lee;Jeongkeun Lee;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.584-589
    • /
    • 2023
  • The physicochemical properties of VOx/TiO2 catalysts with different TiO2 supports were analyzed, and SCR reactions were performed. VOx/TiO2 catalysts were prepared by impregnation using anatase TiO2, which was manufactured by Sigma Aldrich and prepared from TiOCl2 and titanium isopropoxide (TTIP) as a precursor. They are denoted as VS, VC, and VP. The specific surface area of the VS was 1/10 or less of that of the VC and VP, and the dispersibility of vanadium oxide was relatively low. As a result of XPS analysis, the ratio of adsorbed oxygen was higher in VS and VP with Ti3+ than in VC. In VC and VP, vanadium mainly existed in V4+ and V3+ states in relation to the dispersibility of vanadium oxide. The amount of adsorbed oxygen contributed more to NH3-SCR activity than vanadium oxide dispersibility below 250 ℃, while vanadium oxide dispersibility contributed more to activity beyond 300 ℃. The fast SCR activity in all three samples was the highest at NO2/NOx = 0.5, followed by VS < VC < VP samples. It was determined that the dispersibility of vanadium oxide had a significant effect on fast NH3-SCR activity.

Effect of Vanadium Surface Density of SCR Catalyst on Reaction Activity and SO2 Durability (상용 SCR 촉매의 바나듐 표면밀도가 반응활성 및 SO2 내구성에 미치는 영향연구)

  • Won, Jong Min;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • In this study, the reaction activity and XRD, BET, and Raman analysis were performed to verify $NH_3$-SCR reaction characteristics of various commercial SCR catalysts. It can be seen that the reaction rate of each commercial SCR catalyst increased linearly with increasing the vanadium content (1.3-5.4 wt%). In addition, through the above analysis, it was possible to confirm that the addition of WOx in the catalyst increased the Turn over frequency (TOF) within the range where the VOx surface density was more than 8.1 and the crystalloid VOx was not formed through the surface structure analysis. $SO_2$ durability tended to decrease with increasing the vanadium content, and the durability increased the most when W and Si were added.

The Effect of Oxygen in Low Temperature SCR over Mn/$TiO_2$ Catalyst (Mn/$TiO_2$ 촉매를 이용한 저온 SCR 반응에서 산소의 영향)

  • Lee, Sang Moon;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.119-123
    • /
    • 2012
  • This study presents the effect of oxygen on the $NH_3$ selective catalytic reduction (SCR) by Mn/$TiO_2$ catalyst. The lattice oxygen of catalysts is participate in the low temperature SCR, and the gaseous oxygen directly takes part in the rexoidtion of reduced catalyst. These redox properties of oxygen an play important role in SCR activity and the available capability of lattice oxygen depends on the manganese oxidation state of the catalyst surface. $MnO_2$ species has a higher redox property than that of $Mn_2O_3$ species on deposited $TiO_2$ surface and these manganese oxide states strongly depend on the $TiO_2$ surface area.