Browse > Article

The Effect of Oxygen in Low Temperature SCR over Mn/$TiO_2$ Catalyst  

Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
Choi, Hyun Jin (Department of Green Process R&D, Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology)
Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.23, no.1, 2012 , pp. 119-123 More about this Journal
Abstract
This study presents the effect of oxygen on the $NH_3$ selective catalytic reduction (SCR) by Mn/$TiO_2$ catalyst. The lattice oxygen of catalysts is participate in the low temperature SCR, and the gaseous oxygen directly takes part in the rexoidtion of reduced catalyst. These redox properties of oxygen an play important role in SCR activity and the available capability of lattice oxygen depends on the manganese oxidation state of the catalyst surface. $MnO_2$ species has a higher redox property than that of $Mn_2O_3$ species on deposited $TiO_2$ surface and these manganese oxide states strongly depend on the $TiO_2$ surface area.
Keywords
Mn/$TiO_2$; $NH_3$ SCR; lattice oxygen; redox;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Bosch and F. Jamssen, Catal. Today, 2, 369 (1988).   DOI
2 V. I. Parvulescu, P. Grange, and B. Delmon, Catal. Today, 46, 236 (1998).
3 P. Forzatti and L. Lietti, Heterogeneous Chem. Rev., 3, 33 (1996).   DOI
4 J. L. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, G. Ramis, E. Giamello, and F. Bregani, J. Catal., 155, 117 (1995).   DOI
5 D. A. Pena, B. S. Uphade, and P. G. Smirniotis, J. Catal., 221, 421 (2004).   DOI
6 S. Roy, B. Viswanath, M. S. Hegde, and G. Madras, J. Phys. Chem. C, 112, 6002 (2008).   DOI
7 C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, and X. Verykios, J. Catal., 178, 214 (1998).   DOI
8 R. Xu, X. Wang, D. Wang, K. Zhou, and Y. Li, J. Catal., 237, 426 (2006).   DOI
9 X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, and W. Shen, Appl. Catal. B; Environ., 62, 265 (2006).
10 J. F. Li, N. Q. Yan, Z. Qu, S. H. Qiao, S. J. Yang, Y. F. Guo, P. Liu, and J. P. Jia, Environ. Sci. Technol., 44, 426 (2010).   DOI
11 G. Qi, R. T. Yang, and R. Chang, Appl. Catal. B; Environ., 51, 93 (2004).   DOI
12 F. Kapteijn, A. D. V. Langeveld, J. A. Moulijn, and A. Andrein, J. Catal., 150, 94 (1994).   DOI
13 P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Ind. Eng. Chem. Res., 45, 6436 (2006).   DOI
14 M. Koebel, M. Elsener, and G. Madia, Ind. Eng. Chem. Res., 40, 52 (2001).   DOI
15 Zhang-Steenwinkel, J. Beckers, and A. Bliek, Appl. Catal. A: Gen., 235, 79 (2002).   DOI
16 W. C. Wong, Dissertation, California University, California, USA (1982).