Browse > Article
http://dx.doi.org/10.14478/ace.2016.1120

Effect of Vanadium Surface Density of SCR Catalyst on Reaction Activity and SO2 Durability  

Won, Jong Min (Department of Environmental Energy Engineering, Kyonggi University)
Park, Kwang Hee (Department of Environmental Energy Engineering, Kyonggi University)
Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University,)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 158-164 More about this Journal
Abstract
In this study, the reaction activity and XRD, BET, and Raman analysis were performed to verify $NH_3$-SCR reaction characteristics of various commercial SCR catalysts. It can be seen that the reaction rate of each commercial SCR catalyst increased linearly with increasing the vanadium content (1.3-5.4 wt%). In addition, through the above analysis, it was possible to confirm that the addition of WOx in the catalyst increased the Turn over frequency (TOF) within the range where the VOx surface density was more than 8.1 and the crystalloid VOx was not formed through the surface structure analysis. $SO_2$ durability tended to decrease with increasing the vanadium content, and the durability increased the most when W and Si were added.
Keywords
SCR; NOx; $NH_3$; Surface density; Crystalline VOx;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. T. Went, L. Li-jen, R. R. Richard, and T. B. Alexis, The effects of structure on the activity and Selectivity of $V_2O_5$/$TiO_2$ catalyst for the reduction of NO by $NH_3$, J. Catal., 134, 492-505 (1992).   DOI
2 I. Nova, L. dall'Acqua, Li. Lietti, E. Giamello, and P. Forzatti, Studt of thermal deactivation of a deNOx commercial catalyst, Appl. Catal. B, 35, 31-42 (2001).   DOI
3 L. J. Alemany and F. Berti, Characterization and composition of commercial $V_2O_5$&z.sbnd;$WO_3$&z.sbnd;$TiO_2$ SCR catalysts, Appl. Catal. B, 10, 299-311 (1996).   DOI
4 S. M. Cho, Properly apply selective catalytic reduction for NOx removal, Chem. Eng. Prog., 90, 39-45 (1994).
5 S. C. Wood, Select the right IMOx control technology, Chem. Eng. Prog., 24, 32-38 (1994).
6 H. H. Phil, M. P. Reddy, P. A. Kumar, L. K. Ju, and J. S. Hyo, $SO_2$ resistant antimony promoted $V_2O_5$/$TiO_2$ catalyst for $NH_3$-SCR of NOx at low temperatures, Appl. Catal. B, 78, 301-308 (2008).   DOI
7 P. G. W. A. Kompio, A. Bruckner, F. Hipler, G. Auer, E. Loffler, and W. Grunert, A new view on the relations between tungsten and vanadium in $V_2O_5$ single bond $WO_3$/$TiO_2$ catalysts for the selective reduction of NO with $NH_3$, J. Catal., 286, 237-247 (2012).   DOI
8 J. P. Dunn, P. R. G. Koppula, H. Stenger, and I. E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Catal. B, 19, 103-117 (1998).   DOI
9 B. S. Shirke, P. V. Korake, P. P. Hankare, S. R. Bamane, and K. M. Garadkar, Synthesis and characterization of pure anatase $TiO_2$ nanoparticles, J. Mater. Sci., 22, 821-824 (2011).
10 D. W. Kwon and S. C. Hong, Correlation between physicochemical properties of various commercial $TiO_2$ supports and $NH_3$-SCR activities of Ce/Ti catalysts, Appl. Chem. Eng., 26, 193-198 (2015).   DOI
11 R. D. Shannon and J. A. Pask, Kinetics of the anatase-rutile transformation, J. Am. Ceram. Soc., 48, 391-398 (1965).   DOI
12 I. E. Wachs, Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts, Catal. Today, 27, 437-455 (1996).   DOI
13 D. W. Kwon, K. H. Park, and S. C. Hong, Influence of VOx surface density and vanadyl species on the selective catalytic reduction of NO by $NH_3$ over VOx/$TiO_2$ for superior catalytic activity, Appl. Catal. A, 499, 1-12 (2015).   DOI
14 Y. Byun, K. B. Ko, M. Cho, W. Namkung, K. Lee, D. N. Shin, and D. J. Koh, Reaction pathways of NO oxidation by sodium chlorite powder, Environ. Sci. Technol., 43, 5054-5059 (2009).   DOI
15 T. W. Chien, and H. Chu, Removal of $SO_2$ and NO from flue gas by wet scrubbing using an aqueous $NaClO_2$ solution, J. Hazard. Mater., 80, 43-57 (2000).   DOI
16 M. Kobayashi and K. Miyoshi, $WO_3$-$TiO_2$ monolithic catalysts for high temperature SCR of NO by $NH_3$: Influence of preparation method on structural and physico-chemical properties, activity and durability, Appl. Catal. B, 72, 253-261 (2007).   DOI
17 L. Lietti, J. L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello, and F. Bregani, Reactivity of $V_2O_5$-$WO_3$/$TiO_2$ catalysts in the selective catalytic reduction of nitric oxide by ammonia, Catal. Today, 29, 143-148 (1996).   DOI
18 P. S. Metkar, M. P. Harold, and V. Balakotaiah, Selective catalytic reduction of NOx on combined Fe- and Cu-Zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B, 111-112, 67-80 (2012).   DOI
19 G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_3$ over MnOx-$CeO_2$ catalysts, J. Catal., 217, 434-441 (2003).   DOI
20 S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy, 86, 2283-2297 (2009).   DOI
21 T. Kolli, K. R. Tolonen, and U. Lassi, Influence of BaO on Pd/$Al_2O_3$-based catalysts in $C_2H_4$ and CO oxidation as well as in NO reduction, Catal. Today, 100, 303-307 (2005).   DOI
22 A. D. Bellifa, Y. N. Tchenar, A. C. Braham, R. Bachir, S. Bedrane, and C. Kappenstein, Preparation and characterization of 20 wt% $V_2O_5$-$TiO_2$ catalyst oxidation of cyclohexane, Appl. Catal. A: Gen., 305, 1-6 (2006).   DOI
23 W. Zhao, Q. Zhong, Y. Pan, and R. Zhang, Defect structure and evolution mechanism of $O^{2-}$ radical in F-doped $V_2O_5$/$TiO_2$ Catalysts, Collids Surf. A, 436, 1013-1020 (2013).   DOI
24 S. H. Choi, S. P. Cho, J. Y. Lee, S. C. Hong, and S. I. Hong, The influence of non-stoichiometric species of V/$TiO_2$ catalysts on selective catalytic reduction at low temperature, J. Mol. Catal. A, 304, 166-173 (2009).   DOI
25 Y. Peng, C. Wang, and J. Li, Structure-activity relationship of VOx/$CeO_2$ nanorod for NO removal with ammonia, Appl. Catal. B, 144, 538-546 (2014).   DOI
26 C. Wang, S. Yang, H. Chang, Y. Peng, and J. Li, Dispersion of tungsten oxide on SCR performance of $V_2O_5$-$WO_3$/$TiO_2$: Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013).   DOI
27 D. Srinivas, W. F. Holderich, S. Kujath, M. H. Valkenberg, T. Raja, L. Saikia, R. Hinze, and V. Ramaswamy, Active sites in vanadia/titania catalysts for selective aerial oxidation of ${\beta}$-picoline to nicotinic acid, J. Catal., 259, 165-173 (2008).   DOI
28 F. Tang, K. Zhuang, F. Yang, L. Yang, B. Xu, J. Qiu, and Y. Fan, Effect of dispersion state and surface properties of supported vanadia on the activity of $V_2O_5$/$TiO_2$ catalysts for the selective catalytic reduction of NO by $NH_3$, Chin. J. Catal., 33, 933-940 (2012).   DOI
29 Z. Wu, V. Schwartz, M. Li, A. J. Rondinone, and S. H. Overbury, Support shape effect in metal oxide catalysis: Ceria-nanoshape Supported vanadia catalysts for oxidative dehydrogenation of isobutane, J. Phys. Chem. Lett., 3, 1517-1522 (2012).   DOI
30 L. Lietti, I. Nova, and P. Forzatti, Selective catalytic reduction (SCR) of NO by $NH_3$ over $TiO_2$-supported $V_2O_5$-$WO_3$ and $V_2O_5$-$MoO_3$ catalysts, Top. Catal., 11-12, 111-122 (2000).   DOI
31 I. Giakoumelou, C. Fountzoula, C. Kordulis, and S. Boghosian, Molecular structure and catalytic activity of $V_2O_5$/$TiO_2$ catalysts for the SCR of NO by $NH_3$: In-situ Raman spectra in the presence of $O_2$, $NH_3$, NO, $H_2$, $H_2O$, and $SO_2$, J. Catal., 239, 1-12 (2006).   DOI
32 F. D. Hardcastle and I. E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy, J. Phys. Chem., 95, 5031-5041 (1991).   DOI
33 B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon, and H. K. Lee, Study on the removal of NOx from simulated flue gas using acidic $NaClO_2$ solution, J. Environ. Sci., 20, 33-38 (2008).   DOI