• Title/Summary/Keyword: $NF-{\kappa}B$ pathway

Search Result 464, Processing Time 0.03 seconds

1-Kestose Blocks UVB-Induced Skin Inflammation and Promotes Type I Procollagen Synthesis via Regulating MAPK/AP-1, NF-κB and TGF-β/Smad Pathway

  • Jihye Baek;Jong-Hwa Kim;Jiwon Park;Do Hyun Kim;Soonok Sa;Jung-Sook Han;Wonyong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.911-919
    • /
    • 2024
  • Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-β/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

The role of CD14 and Toll-like receptors on the release of MMP-B in the LPS recognition pathway (지질 다당질 인지경로에서 기질금속단백분해효소-8 분비에 대한 CD14와 Toll-like receptors의 역할 연구)

  • Yang, Seung-Min;Kim, Tae-li;Seol, Yang-Jo;Lee, Yang-Moo;Ku, Young;Chung, Chong-Pyoung;Han, Soo-Boo;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.579-590
    • /
    • 2006
  • 1. 연구배경 교원질 분해작용을 하는 호중구의 세포질 효소인 기질금속단백분해효소-8은 치주질환, 류마티스 관절염, 그리고 궤양결장염과 같은 염증성 질환에서 농도가 증가한다고 알려져 있다. 최근에는 A. actinomycetemcomitans의 leukotoxin이 사람호중구에서 기질금속단백분해효소-8의 분비를 유도하는 것이 보고되었다. 이 연구의 목적은 선천면역 체계에서 세포표면 항원무리14, Toll-like 수용기, 그리고 $NF-{\kappa}$ B경로를 통하여 A. actinomycetemcomitans의 지질다당질로 유도된 기질금속단백분해효소-8의 분비 여부와 세포기전을 알아보고자 하였다. 2. 연구재료 및 방법 건강한 개인 제공자(남자 13명, 여자 3명)로부터 얻은 개개인의 20ml 말초혈액을 제조사의 지침에 따라 호중구를 추출한 후 항세포표면 항원무리14와 함께 $4^{\circ}C$에서 30분간 전배양 한 후, $37^{\circ}C$에서 9시간 동안 배양시켰다. 추출한 호중구에 Toll-like 수용기 억제제 또는 $NF-{\kappa}$ B억제제인 TPCK를 첨가한 후 $37^{\circ}C$에서 1시간 동안 전배양하고 $37^{\circ}C$에서 9시간 동안 배양시켰다. 호중구에 세포뼈대 억제제인 cholchicine, nocodazole, demecolcine, 그리고 cytochalasin B를 A. actinomycetemcomitans의 지질다당질과 함께 $37^{\circ}C$에서 9시간 동안 배양시켰다. 기질금속단백분해효소-8 분비량은 효소면역측정법을 통해 결정하였다. 통계처리는 일원배치 분산분석법을 이용하였다(p<0.05). 3. 결과 A. actinomycetemcomitans 지질다당질은 기질금속단백분해효소-8의 분비를 증가시켰다. 기질금속단백분해효소-8의 분비는 항세포표면 항원무리14에 의해서 억제되었지만, 항 Toll-like 수용기2, 항 Toll-like 수용기4 항체는 억제시키지 못했다. $NF-{\kappa}$ B 억제제는 A. actinomycetemcomitans의 지질다당질로 유도된 $NF-{\kappa}$ B 결합 활성도와 기질금속단백분해효소-8 분비를 억제하였다. 미세섬유 중합반응 억제제는 A. actinomycetemcomitans의 지질다당질로 유도된 기질금속단백분해효소-8의 분비를 억제시켰으나, 미세관 중합반응억제제는 억제시키지 못했다. 4. 결론 위의 연구결과를 종합하여 볼 때, 기질금속단백분해효소-8은 A. actinomycetemcomitans의 지질다당질로 유도되며, 세포표면 항원무리-$NF-{\kappa}$ B 경로를 통하여 분비되고, 이 분비 과정은 미세섬유 계통이 관여하는 것으로 보인다.

Effects of Tribuli Fructus extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells (비만세포에서 백질려 추출물의 항염증효과에 대한 연구)

  • Rho, Hyo Sun;Park, Yong-Ki;Bae, Hyo Sang
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Objectives : Tribulus terrestris $Linn{\acute{e}}$ (Tribuli Fructus; TF) has been used to treat hypochondrium, agalactia, nebula, itching and vitiligo in traditional Korean medicine. In this study, we investigated the effects of TF 30% ethanol extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells. Methods : TF extract was prepared by 30% ethanol. RBL-2H3 cells, a rat mast cell line, were treated with TF extract at different concentrations for 1 hr and then stimulated with DNP-IgE/HSA for indicated times. Cell viability was measured by WST-1 assay. The expression of inflammatory cytokines (IL-4, IL-13 and $IFN-{\gamma}$) mRNA was determined by reverse transcriptase-PCR, and the phosphorylation of ERK1/2, p38 and JNK MAP kinases (MAPKs) was determined by Western blot. The nuclear expression of $NF-{\kappa}B$ p65 in the cells was detected by Western blot and immunocytochemistry, respectively. Results : The treatment of TF extract at 0.1 and $0.2mg/m{\ell}$ significantly decreased the expression of IL-4 and IL-13 mRNA in IgE-stimulated RBL-2H3 mast cells, while significantly increased the expression of $IFN-{\gamma}$ mRNA. TF extract treatment was also inhibited the phosphorylation of ERK1/2, p38 and JNK MAPKs in IgE-stimulated RBL-2H3 mast cells in a dose-dependent manner. In addition, TF extract significantly blocked the translocation of $NF-{\kappa}B$ p65 into the nuclear of cells after IgE stimulation. Conclusions : These results indicate that TF extract inhibits inflammatory response in IgE-stimulated mast cells through blocking MAPKs/$NF-{\kappa}B$ pathway. This suggests that TF extract has an anti-inflammatory activity in mast cell activation.

[Retraction]Anti-inflammatory activity of a short peptide designed for anti-cancer: a beneficial off-target effect of tertomotide ([논문철회]항암백신 tertomotide의 항염활성 연구)

  • Lee, Hyosung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 2022
  • Tertomotide is a peptide vaccine developed for anti-cancer therapy. Since it has been found to ameliorate inflammatory symptoms in animal studies and clinical test, we investigated anti-inflammation activity of the tertomotide and the mechanism of action in monocyte in order to assess if tertomotide may serve as an anti-inflammatory agent by checking inflammatory cytokines and related signaling pathway following tertomotide treatment. We found that tertomotide reduced the level of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-8 in LPS- or PMA-stimulated monocyte cell line and suppressed NF-κB signaling including the activation of ERK1/2 and P38 MAPK following TNF-α treatment. These results may correlate to the beneficial findings in animal studies, implicating that tertomotide may act as a potential anti-inflammatory agent. This study is an exemplary case for convergence that a computationally designed peptide for immunological purpose exerting unexpected biological activity may elicit novel anti-inflammatory drug.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Effects of Isatidis Radix and it's Active Component, Tryptanthrin on the Production of Inflammatory Mediators in Lipopolysaccharide-activated Raw264.7 Cells (LPS로 활성화된 Raw264.7 cell에서 판람근 및 Tryptanthrin의 염증매개물질억제효과)

  • Park, Sook-Jahr;Lee, Jong-Rok;Jo, Mi-Jeong;Park, Sang-Mi;Buyn, Sung-Hui;Cho, Il-Je;Kim, Sang-Chan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.24 no.1
    • /
    • pp.64-77
    • /
    • 2011
  • Objectives : 판람근(板藍根)은 십자화과에 속하는 대청(大靑) 또는 숭남의 근(根)을 건조한 것이다. 본 연구는 판람근(板藍根)이 청열해독(淸熱解毒)함에 근거하여, LPS로 활성화된 Raw264.7 cell에서 판람근(板藍根)과 그 성분중의 하나인 tryptanthrin이 염증매개물질에 미치는 효과를 살펴보고자 하였다. Methods : 세포생존율은 MTT, nitric oxide (NO)는 Griess reagent를 사용하여 측정하였으며, 각 단백질의 발현량은 Western blot 방법을 사용하였으며, cytokine 및 cyclooxygenase-2 (COX-2)는 ELISA방법을 사용하여 측정하였다. Results : LPS는 NO 및 prostaglandin E2 (PGE2)를 유의하게 상승시켰으며, 판람근(板藍根)추출물 (IRE) 및 tryptanthrin 은 이들을 유의하게 억제하였다. 그러나 판람근(板藍根)의 또 다른 성분인 indigo는 유의한 결과를 나타내지 못하였다. IRE와 tryptanthrin은 inhibitory kappa B alpha의 인산화를 억제하여, nuclear factor-${\kappa}$B (NF-${\kappa}$B)의 핵으로의 전위(轉位)를 억제하여, iNOS 및 cytokine을 억제하였다. IRE와 tryptanthrin의 PGE2 억제는, COX-2의 발현억제에서가 아니라, COX-2의 활성을 억제함에서 기인하였다. Conclusion : 이러한 결과는 판람근(板藍根)이 NF-${\kappa}$B pathway를 경유하여 iNOS의 발현 및 COX-2의 활성을 억제함을 나타내며, 이러한 판람근(板藍根)의 항염증효능은 일부 tryptanthrin의 작용에서 기인함을 시사한다.

Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages (LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과)

  • Yang, Hui;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, anti-inflammatory activity of hot water extract of Aronia fruits (AF-H) was examined. Pre-treatment with AF-H significantly inhibited production of nitric oxide (NO) and prostaglandin E-2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The inhibitory effect of AF-H on LPS-induced inflammation was also confirmed by down-regulation of inducible NO synthase as well as cyclooxygenase-2 protein expression. Furthermore, treatment with AF-H significantly inhibited secretion of inflammatory cytokines such as tumor-necrosis $factor-{\alpha}$ and interleukin-6. Signal transduction pathway studies further indicated that AF-H inhibited LPS-induced activation of nuclear $factor-{\kappa}B$, but not mitogen-activated protein kinase. Treatment with AF-H also partially protected against LPS-induced lethal shock in C57BL/6 mice, although its effect was not statistically significant. These results suggest that AF-H is a more promising nutraceutical or medicinal agent for inhibition of LPS-induced inflammation or inflammation-related diseases.

Effect of saccharin on inflammation in 3T3-L1 adipocytes and the related mechanism

  • Kim, Hye Lin;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.109-116
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Excessive intake of simple sugars induces obesity and increases the risk of inflammation. Thus, interest in alternative sweeteners as a sugar substitute is increasing. The purpose of this study was to determine the effect of saccharin on inflammation in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were differentiated into adipocytes. The adipocytes were treated with saccharin (0, 50, 100, and 200 ㎍/mL) for 24 h. Inflammation was induced by exposure of treated adipocytes to lipopolysaccharide (LPS) for 18 h and cell proliferation was measured. The concentration of nitric oxide (NO) was measured by using Griess reagent. Protein expressions of nuclear factor kappa B (NF-κB) and inhibitor κB (IκB) were determined by western blot analysis. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) were determined by real-time PCR. RESULTS: Compared with the control group, the amount of NO and the mRNA expression of iNOS in the LPS-treated group were increased by about 17.6% and 46.9%, respectively, (P < 0.05), and those parameter levels were significantly decreased by saccharin treatment (P < 0.05). Protein expression of NF-κB was decreased and that of IκB was increased by saccharin treatment (P < 0.05). Saccharin decreased the mRNA expression of COX-2 and the inflammation cytokines (IL-1β, IL-6, MCP-1, and TNF-α) (P < 0.05). CONCLUSIONS: The results of this study suggest that saccharin can inhibit LPS-induced inflammatory responses in 3T3-L1 adipocytes via the NF-κB pathway.

Immunomodulatory Effects of Dioscoreae Rhizome Against Inflammation through Suppressed Production of Cytokines Via Inhibition of the NF-${\kappa}B$ Pathway

  • Kim, Seulah;Shin, Seulmee;Hyun, Bobae;Kong, Hyunseok;Han, Shinha;Lee, Aeri;Lee, Seungjeong;Kim, Kyungjae
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.181-188
    • /
    • 2012
  • Dioscoreae Rhizome (DR) has been used in traditional medicine to treat numerous diseases and is reported to have anti-diabetes and anti-tumor activities. To identify a bioactive traditional medicine with anti-inflammatory activity of a water extract of DR (EDR), we determined the mRNA and protein levels of proinflammatory cytokines in macrophages through RT-PCR and western blot analysis and performed a FACS analysis for measuring surface molecules. EDR dose-dependently decreased the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, and $PGE_2$, as well as mRNA levels of iNOS, COX-2, and pro-inflammatory cytokines, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 was also reduced by EDR. Furthermore, activation of the nuclear transcription factor, NF-${\kappa}B$, but not that of IL-4 and IL-10, in macrophages was inhibited by EDR. These results show that EDR decreased pro-inflammatory cytokines via inhibition of NF-${\kappa}B$-dependent inflammatory protein level, suggesting that EDR could be a useful immunomodulatory agent for treating immunological diseases.