• Title/Summary/Keyword: $NF-{\kappa}B$ activity

Search Result 726, Processing Time 0.029 seconds

Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-Induced Oxidative Stress In Vitro and In Vivo

  • Cho, Su-Hyeon;Heo, Soo-Jin;Yang, Hye-Won;Ko, Eun-Yi;Jung, Myeong Seon;Cha, Seon-Heui;Ahn, Ginnae;Jeon, You-Jin;Kim, Kil-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1193-1203
    • /
    • 2019
  • We investigated the protective effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) from Polysiphonia morrowii Harvey against hydrogen peroxide ($H_2O_2$)-induced apoptosis in Vero cells. BDB exhibited scavenging activity for DPPH, hydroxyl, and alkyl radicals. BDB also inhibited $H_2O_2$-induced lipid peroxidation, cell death, and apoptosis in Vero cells by inhibiting the production of ROS. To evaluate the molecular mechanisms of apoptosis inhibition, the expression of Bax/Bcl-xL and $NF-{\kappa}B$ was assessed by western blot assay. BDB significantly suppressed the cleavage of caspase-9 and PARP and reduced Bax levels in $H_2O_2$-induced Vero cells. Besides, BDB suppressed the phosphorylation of $NF-{\kappa}$B and the translocation of p65 in $H_2O_2$-induced cells. Furthermore, we evaluated the effect of BDB on ROS production, cell death, and lipid peroxidation in an $H_2O_2$-stimulated zebrafish embryo model. Taken together, these results indicated that ROS generation and cell death were significantly inhibited by BDB in zebrafish embryos, thereby proving that BDB exerts excellent antioxidant activity in vitro and in vivo.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Rhus Verniciflua Stokes Extract Suppresses Expression of Metalloproteinases, iNOS and COX-2 in THP-1 Cells Via Inhibiting NF-𝜅B and MAPK Phosphorylation

  • Ko, Hwanjoo;Jang, Eungyeong;Kim, Youngchul
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.12-26
    • /
    • 2020
  • Objectives: The aim of this study is to investigate the mechanisms involved in the anti-inflammatory and anti-tumor effects of Rhus verniciflua Stokes (RVS) on PMA-differentiated human monocytic leukemia THP-1 cells. Methods: Cells were treated with various concentrations of RVS decoction (0-300㎍/ml) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay. The expressions of MMP-2, MMP-9, TIMP-1, TIMP-2, iNOS and COX-2 mRNA and proteins were measured using RT-PCR and western blotting, respectively. Results: RVS suppressed expression of MMP-2 and MMP-9 mRNA. It also down-regulated iNOS and COX-2 mRNA and protein expression. RVS inhibited NF-𝜅B p65 activity and the phosphorylation of Akt and MAPK (ERK and p38 MAPK). Instead, the phosphorylation of JNK is increased at a very low concentration but decreased at higher concentrations. Conclusion: RVS is regarded to inhibit the expression of MMP and TIMP as well as iNOS and COX-2 gene expression via directly inhibiting the activation of NF-𝜅B and phosphorylation of MAPK pathway in THP-1 cells. This suggests RVS have potential to be used as a therapeutic agent for acute myeloid leukemia (AML).

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

Immunostimulatory activity of hydrolyzed and fermented Platycodon grandiflorum extract occurs via the MAPK and NF-κB signaling pathway in RAW 264.7 cells

  • Jae In, Jung;Hyun Sook, Lee;So Mi, Kim;Soyeon, Kim;Jihoon, Lim;Moonjea, Woo;Eun Ji, Kim
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.685-699
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG) has long been known as a medicinal herb effective in various diseases, including bronchitis and asthma, but is still more widely used for food. Fermentation methods are being applied to increase the pharmacological composition of PG extracts and commercialize them with high added value. This study examines the hydrolyzed and fermented PG extract (HFPGE) fermented with Lactobacillus casei in RAW 264.7 cells, and investigates the effect of amplifying the immune and the probable molecular mechanism. MATERIALS/METHODS: HFPGE's total phenolic, flavonoid, saponin, and platycodin D contents were analyzed by colorimetric analysis or high-performance liquid chromatography. Cell viability was measured by the MTT assay. Phagocytic activity was analyzed by a phagocytosis assay kit, nitric oxide (NO) production by a Griess reagent system, and cytokines by enzyme-linked immunosorbent assay kits. The mRNA expressions of inducible nitric oxide synthase (iNOS) and cytokines were analyzed by reverse transcription-polymerase chain reaction, whereas MAPK and nuclear factor (NF)-κB activation were analyzed by Western blots. RESULTS: Compared to PGE, HFPGE was determined to contain 13.76 times and 6.69 times higher contents of crude saponin and platycodin D, respectively. HFPGE promoted cell proliferation and phagocytosis in RAW 264.7 cells and regulated the NO production and iNOS expression. Treatment with HFPGE also resulted in increased production of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand10, granulocyte-colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, and the mRNA expressions of these cytokines. HFPGE also resulted in significantly increasing the phosphorylation of NF-κB p65, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. CONCLUSIONS: Taken together, our results imply that fermentation and hydrolysis result in the extraction of more active ingredients of PG. Furthermore, we determined that HFPGE exerts immunostimulatory activity via the MAPK and NF-κB signaling pathways.

Anti-Inflammatory Activity of Dichloromethane Fraction from Katsuwonus pelamis Heart in LPS-Induced RAW 264.7 Cells and Mouse Ear Edema (Lipopolysaccharide로 자극된 RAW 264.7 세포와 마우스 귀부종 모델에 대한 참치 심장 Dichloromethane 분획물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Choi, Hyeun-Deok;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Nam, Hee-Sup;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.101-109
    • /
    • 2017
  • This study investigated the effect of the dichloromethane fraction form Katsuwonus pelamis heart on anti-inflammatory responses in lipopolysaccharide-stimulated RAW 264.7 cells and mouse models. Ethanol extract was partitioned with dichloromethane, ethyl acetate, butanol, and water. Among the fractions, the dichloromethane fraction showed a significant decrease in nitric oxide (NO) and pro-inflammatory cytokines [interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$] production compared to ethanol extract. The dichloromethane fraction attenuated the expression of inducible nitric oxide synthase and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65 proteins in a dose-dependent manner. In addition, the expression of phosphorylation of mitogen-activated protein kinases (MAPKs) was also inhibited by the dichloromethane fraction. Moreover, the administration of 10, 50, and 250 mg/kg body weight-dose dependently inhibited the formation of edema by croton-oil and the application of dichloromethane (2 mg/ear) significantly reduced epidermal and dermal thickness and the infiltrated mast cell numbers. Therefore, the dichloromethane fraction exhibited an anti-inflammation effect by inhibiting $NF-{\kappa}B$ and MAPK signaling activation in macrophages.

Anti-inflammatory Effect of Flower Bud and Fruit of Sweet Persimmon, Diospyros kaki T.

  • Park, Yeo Ok;Lee, Jeong Ah;Park, Seong Moon;Ha, Min Hee;Joo, Woo Hong;Kim, Dong Wan
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.85-92
    • /
    • 2020
  • Various beneficial effects of sweet persimmon (Diospyros kaki T.) including anti-oxidation, anti-bacteria and viruses, anti-allergy were widely reported previously. However, the anti-inflammatory effect and its molecular mechanisms are not clear. In this study, the anti-inflammatory effect of the extracts of flower bud and fruit of sweet persimmon was investigated in LPS-treated RAW264.7 cells. Both extracts of flower bud and fruit showed strong inhibitory effect on the LPS-induced NF-κB activation. IκBα, the inhibitor of NF-κB, was increased and the expressions of NF-κB target genes, COX-2 and iNOS, were suppressed by the treatment with the extracts of flower bud and fruit. The expressions of pro-inflammatory cytokines, IL-1β, IL-6, TNF-α were also suppressed by the extracts. In addition, the LPS-induced wnt/β-catenin pathway and its related gene expressions including cyclin D1, wnt 3a, wnt 5a were suppressed by the extracts. The extracts also showed anti-oxidant activity and suppressive effect on the LPS-induced apoptosis of RAW264.7 cells. These results suggest that the flower bud and fruit of sweet persimmon display strong anti-inflammatory effect through inhibiting the pro-inflammatory signaling pathways in the cells.

Inhibitory Activity of Cordyceps bassiana Extract on LPS-induced Inflammation in RAW 264.7 Cells by Suppressing NF-κB Activation

  • Yoon, Deok Hyo;Han, Changwoo;Fang, Yuanying;Gundeti, Shankariah;Han Lee, In-Sook;Song, Won O;Hwang, Ki-Chul;Kim, Tae Woong;Sung, Gi-Ho;Park, Haeil
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Cordyceps bassiana has long been used as an oriental medicine and reported to possess diverse biological activities. The fruiting bodies of Cordyceps bassiana was extracted with ethanol and then further fractionated with n-hexane, ethyl acetate, n-butanol and water. The butanol fraction from Cordyceps bassiana (CBBF) exhibited the most effective in anti-inflammatory activity in RAW 264.7 macrophages and the roles of CBBF on the anti-inflammation cascade in LPS-stimulated RAW 264.7 cells were studied. To investigate the mechanism by which CBBF inhibits NO, iNOS and COX-2, the activation of $I{\kappa}B$ and MAPKs in LPS-activated macrophage were examined. Our present results demonstrated that CBBF inhibits NO production and iNOS expression in LPS-stimulated RAW 264.7 macrophage cells, and these effects were mediated through the inhibition of $I{\kappa}B-{\alpha}$, JNK and p38 phosphorylation. Also, CBBF suppressed activation of MAPKs including p38 and SAPK/JNK. Furthermore, CBBF significantly suppressed LPS-induced intracellular ROS generation. Its inhibition on iNOS expression, together with its antioxidant activity, may support its anti-inflammatory activity. Thus Cordyceps bassiana can be used as a useful medicinal food or drug for further studies.

The Experimental Study on Antioxidant, Anti-inflammatory, Antipruritic and Antibacterial Effects of the Banchong-san (BCS) (반총산의 항산화, 항염증, 항소양증, 항균효능에 관한 실험 연구)

  • Cho, Eun-Jin;Jo, Seong-Hui;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.29-48
    • /
    • 2021
  • Objectives: Banchong-san (BCS) is a herbal formula composed of 13 korean medicinal herbs and is traditionally used to treat inflammatory diseases and pain. The object of this study was to research the antioxidant, anti-inflammatory, antipruritic and antimicrobial effects of the BCS in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: In this experiment, effects of BCS on the following four were measured as follows: (1) Anti-oxidative effects were evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) Radical scavenging activity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Radical scavenging activity. (2) Anti-inflammatory effects were evaluated by the production amount of Reactive oxygen species (ROS), Nitric oxide (NO), Interleukin-1β (IL-1β), Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), Prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)(the previous two are "mRNA"), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), inhibitor of nuclear factor kappa B (IκBα), nuclear factor kappa B (NF-κB) (the previous five are "Protein") in LPS-Stimulated RAW 264.7 cells. (3)Antipruritic effects were evaluated by the production amount of histamine, Leukotriene B4 (LTB4), LeukotrieneC4 (LTC4) Levels in phorbol 12-myristate 13-acetate(PMA)/ionomycin-stimulated MC/9 mast cell. (4) Anti-microbial effects were evaluated by the growth suppression of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. Results: The following results were obtained through each measurement: (1) DPPH Radical Scavenging Activity, ABTS Radical Scavenging Activity evoked a significant concentration-dependent increase. (2) ROS, NO, IL-1β, IL-6, TNF-α, PGE2 production amount, iNOS, COX-2 mRNA expression were significantly reduced in the BCS extraction group compared with the control group and significantly decreased the amount of ERK, JNK, p38, NF-κB Protein expression. The amount of IκB-α Protein Expression have increased significantly. (3) The amounts of histamine, LTB4, LTC4 were significantly decreased. (4) The antibacterial efficacy, BCS inhibited the growth of Escherichia coli, Pseudomonas aeruginosa at concentrations of 5 ㎍/ml, but did not suppress the growth of staphylococcus aureus and aspergillus niger. Conclusions: The experimental results show that BCS has anti-oxidant, anti-inflammatory, antipruritic and antimicrobial properties.