Browse > Article
http://dx.doi.org/10.4014/jmb.1904.04062

Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-Induced Oxidative Stress In Vitro and In Vivo  

Cho, Su-Hyeon (Chuncheon Center, Korea Basic Science Institute (KBSI))
Heo, Soo-Jin (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science and Technology)
Yang, Hye-Won (Department of Marine Life Science, Jeju National University)
Ko, Eun-Yi (Bio Research Center)
Jung, Myeong Seon (Chuncheon Center, Korea Basic Science Institute (KBSI))
Cha, Seon-Heui (Department of Marine Biomedical Science, Hanseo University)
Ahn, Ginnae (Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University)
Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
Kim, Kil-Nam (Chuncheon Center, Korea Basic Science Institute (KBSI))
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.8, 2019 , pp. 1193-1203 More about this Journal
Abstract
We investigated the protective effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) from Polysiphonia morrowii Harvey against hydrogen peroxide ($H_2O_2$)-induced apoptosis in Vero cells. BDB exhibited scavenging activity for DPPH, hydroxyl, and alkyl radicals. BDB also inhibited $H_2O_2$-induced lipid peroxidation, cell death, and apoptosis in Vero cells by inhibiting the production of ROS. To evaluate the molecular mechanisms of apoptosis inhibition, the expression of Bax/Bcl-xL and $NF-{\kappa}B$ was assessed by western blot assay. BDB significantly suppressed the cleavage of caspase-9 and PARP and reduced Bax levels in $H_2O_2$-induced Vero cells. Besides, BDB suppressed the phosphorylation of $NF-{\kappa}$B and the translocation of p65 in $H_2O_2$-induced cells. Furthermore, we evaluated the effect of BDB on ROS production, cell death, and lipid peroxidation in an $H_2O_2$-stimulated zebrafish embryo model. Taken together, these results indicated that ROS generation and cell death were significantly inhibited by BDB in zebrafish embryos, thereby proving that BDB exerts excellent antioxidant activity in vitro and in vivo.
Keywords
Polysiphonia morrow Harvey; 3-bromo-4,5-dihydroxybenzaldehyde; oxidative stress; reactive oxygen species; antioxidant; zebrafish embryos;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tang XY, Zhang q, Dai DZ, Ying HJ, Wang QJ, Dai Y. 2008. Effects of strontium fructose 1,6-diphosphate on expression of apoptosis-related genes and oxidative stress in testes of diabetic rats. Int. J. Urol. 15: 251-256.   DOI
2 Niki E. 2008. Lipid peroxidation products as oxidative stress biomarkers. BioFactors 34: 171-180.   DOI
3 Cidlowski J-A, Schwartzman R-A. 1993. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr. Rev. 14: 133-151.   DOI
4 Kannan K, Jain S-K. 2000. Oxidative stress and apoptosis. Pathophysiology 7: 153-163.   DOI
5 Kerr J-F, Wyllie A-H, Currie A-R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239-257.   DOI
6 M, Adams J, Cory S. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322-1326.   DOI
7 L. Jones N, Islur A, Haq R, Mascarenhas M, Karmali M, Perdue M, et al. 2000. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the BCL-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278: G811-819.   DOI
8 Finucane D-M, Bossy-Wetzel E, Waterhouse N-J, Cotter T-G, Green D-R. 1999. Bax-induced caspase activation and apoptosis via cytochromec release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233.   DOI
9 Cohen G-M. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326: 1-16.   DOI
10 M Konig G, Wright A-D, Sticher O, Angerhofer C, M Pezzuto J. 1995. Biological activities of selected marine natural products. Planta. Med. 60: 532-537.   DOI
11 Cha SH, Ahn GN, Heo SJ, Kim KN, Lee KW, Song CB, et al. 2006. Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J. Korean Soc. Food. Sci. Nutr. 35: 307-314.   DOI
12 Kim SY, Ryel Kim S, Oh MJ, Jung SJ, Kang S. 2011. In vitro antiviral activity of red alga, polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol. 49: 102-106.   DOI
13 Sun XM, MacFarlane M, Zhuang J, Wolf B-B, Green D-R, Cohen G-M. 1999. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem. 274: 5053-5060.   DOI
14 Aleksandar R, Stefanie T, Achenbach J, Andreas K, Anna V, Tanja K, et al. 2010. Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to vaccinia virus. J. Antivir. Antiretrovir. 2: 51-55.
15 Tannin-Spitz T, Bergman M, van-Moppes D, Grossman S, Arad S. 2005. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J. Appl. Phycol. 17: 215-222.   DOI
16 Matsui M, Muizzuddin N, Arad S, Marenus K. 2003. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl. Biochem. Biotechnol. 104: 13-22.   DOI
17 Jung WK, Je JY, Kim HJ, Kim SJ. 2002. A novel anticoagulant protein from scapharca broughtonii. J. Biochem. Mol. Biol. 35: 199-205.
18 Saravanakumar D, Folb P, Campbell B, Smith P. 2008. Antimycobacterial activity of the red alga polysiphonia virgata. Pharm. Biol. 46: 254-260.   DOI
19 Jae Hyun Y, Jing Piao M, Zhang R, Choi Y, Chae S, Won Hyun J. 2012. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes. 83: 71-78.   DOI
20 Oliver F-J, de la Rubia G, Rolli V, Ruiz-Ruiz M-C, de Murcia G, Ménissier-de Murcia J. 1998. Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis Lesson from an uncleavable mutant. J. Biol. Chem. 273: 33533-33539.   DOI
21 Baeuerle P-A. 1998. Pro-inflammatory signaling: last pieces in the NF-${\kappa}$B puzzle? Curr. Biol. 8: R19-R22.   DOI
22 Schreck R, Rieber P, Baeuerle P-A. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10: 2247-2258.   DOI
23 CH Chen A, Arany P, Huang YY, M Tomkinson E, Sharma S, B Kharkwal G, et al. 2011. Low-level laser therapy activates NF-${\kappa}$B via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6: e22453.   DOI
24 Morgan M-J, Liu Zg. 2011. Crosstalk of reactive oxygen species and NF-${\kappa}$B signaling. Cell Res. 21: 103-115.   DOI
25 Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K. 1994. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc. Natl. Acad. Sci. USA 91: 1672-1676.   DOI
26 Alfadda A-A, Sallam R-M. 2012. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012: 1-14.   DOI
27 Piao M-J, Kang K-A, Ryu Y-S, Shilnikova K, Park J-E, Hyun Y-J, et al. 2017. The red algae compound 3-bromo-4,5-dihydroxybenzaldehyde protects human keratinocytes on oxidative stress-related molecules and pathways activated by UVB irradiation. Marine Drugs 15: 268.   DOI
28 Kim EA, Kang MC, Lee JH, Kang N, Lee W, Oh JY, et al. 2015. Protective effect of marine brown algal polyphenols against oxidative stressed zebrafish with high glucose. RSC Adv. 5: 25738-25746.   DOI
29 Lan CC, Tang R, San Leong I-U, Love D-R. 2009. Quantitative real-time RT-PCR (qRT-PCR) of zebrafish transcripts: optimization of RNA extraction, quality control considerations, and data analysis. Cold Spring Harb. Protoc. 2009(10): pdb. prot5314.
30 Ham YM, Yoon WJ, Park SY, Song GP, Jung YH, Jeon YJ, et al. 2012. Quercitrin protects against oxidative stress-induced injury in lung fibroblast cells via up-regulation of Bcl-xL. J. Funct. Foods 4: 253-262.   DOI
31 Oh Baek S, Kim H, Jeong H, Ju E, Kong CS, Seo Y. 2015. Antioxidant activity of the halophyte ligustrum japonicum. KSBB J. 30: 275-282.   DOI
32 Silva F, Marques A, Chaveiro A. 2010. Reactive oxygen species: a double-edged sword in reproduction. Open Vet. Sci. J. 4: 127-133.   DOI
33 Hong CO, Hong ST, Lee YH, Lee KW. 2012. Protective effects of Plantago asiatica L. extract against ferricnitrilotriacetate (Fe-NTA) induced liver oxidative stress in Wistar rats. FASEB J. 26: 107-113.
34 Kang MC, Kim EA, Kang SM, Wijesinghe WAJP, Yang X, Kang NL, et al. 2012. Thermostability of a m arine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava. Algae. 27: 205-213.   DOI
35 Ko YJ, Ahn G, Ham YM, Song SM, Ko EY, Cho SH, et al. 2017. Anti-inflammatory effect and mechanism of action of Lindera erythrocarpa essential oil in lipopolysaccharidestimulated RAW264.7 cells. EXCLI J. 16: 1103-1113.   DOI
36 Choi K-Y, Kim J, Lee M-K, Choi YJ, Ye BR, Kim MS, et al. 2017. Tuberatolide B suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling. Marine Drugs 15(3). pii: E55. doi: 10.3390/md15030055.   DOI
37 Mikami D, Kurihara H, Kim S-M, Takahashi K. 2013. Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar. Drugs 11: 4050-4057.   DOI
38 Ahn GN, Kim KN, Cha SH, Song CB, Lee J, Heo MS, et al. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur. Food Res. Technol. 226: 71-79.   DOI
39 Yang HM, Ham YM, Yoon WJ, Roh S-W, Jeon YJ, Oda T, et al. 2012. Quercitrin protects against ultraviolet B-induced cell death in vitro and in an in vivo zebrafish model. J. Photochem. Photobiol. B. 114: 126-131.   DOI
40 Ko EY, Cho SH, Kang K, Kim G, Lee JH, Jeon YJ, et al. 2017. Anti-inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS-induced RAW 264.7 cells. EXCLI J. 16: 521-530.   DOI
41 Aybek H, Aybek Z, Rota S, Sen N, Akbulut M. 2008. The effects of diabetes mellitus, age, and vitamin E on testicular oxidative stress. Fertil. Steril. . 90: 755-760.   DOI
42 Li M, Liu Z, Zhuan L, Wang T, Guo S, Wang S, et al. 2012. Effects of apocynin on oxidative stress and expression of apoptosis-related genes in testes of diabetic rats. Mol. Med. Rep. 7: 47-52.   DOI
43 Kim JJ, Kim SJ, Kim SH, Park HR, Lee SC. 2005. Antioxidant and anticancer activities of extracts from styela plicata. J. Korean Soc. Food. Sci. Nutr. 34: 937-941.   DOI
44 Berlett B-S, Stadtman E-R. 1997. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316.   DOI
45 Heo SJ, Cha SH, Lee KW, Jeon YJ. 2006. Antioxidant activities of red algae from Jeju Island. Algae 21: 149-156.   DOI
46 Kasuga A, Aoyagi Y, Sugahara T. 1988. Antioxidant activities of edible plants. Nippon Shokuhin Kogyo Gakkaishi. 35: 828-834.   DOI
47 Choi W-Y, Lee H. 2014. Enhancement of antioxidant activities of curcuma longa leaves by ultra high pressure extraction. Korean J. Med. Crop. Sci. 22: 121-126.   DOI
48 Fujihara M, Nagumo T. 1993. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity. Carbohydr. Res. 243: 211-216.   DOI
49 Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, et al. 2009. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29: 493-502.   DOI
50 Zou Y, Zhang Y, Han L, He Q, Hou H, Han J, et al. 2017. Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae. J. Appl. Toxicol. 37: 842-852.   DOI