• Title/Summary/Keyword: $NF-{\kappa}B$ activation

Search Result 834, Processing Time 0.024 seconds

Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein

  • Lee, Sun-Hwa;Kim, Dae-Won;Eom, Seon-Ae;Jun, Se-Young;Park, Mee-Young;Kim, Duk-Soo;Kwon, Hyung-Joo;Kwon, Hyeok-Yil;Han, Kyu-Hyung;Park, Jin-Seu;Hwang, Hyun-Sook;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.354-359
    • /
    • 2012
  • We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPA-induced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin-1 beta (IL-$1{\beta}$), IL-6, and tumor necrosis factor-alpha (TNF-${\alpha}$). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) and phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-${\kappa}B$ and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.

Transduced Tat-Annexin protein suppresses inflammation-associated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells

  • Lee, Sun-Hwa;Kim, Dae-Won;Back, Su-Sun;Hwang, Hyun-Sook;Park, Eun-Young;Kang, Tae-Cheon;Kwon, Oh-Shin;Park, Jong-Hoon;Cho, Sung-Woo;Han, Kyu-Hyung;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.484-489
    • /
    • 2011
  • Annexin-1 (ANX1) is an anti-inflammatory protein as well as an important modulator in inflammation. However, the precise action of ANX1 remains unclear. To elucidate the protective effects of ANX1 on lipopolysaccharide (LPS)-induced murine macrophage Raw 264.7 cells, we constructed a cell-permeable Tat-ANX1 protein. The transduced Tat-ANX1 protein markedly inhibited the expression of cyclooxygenase-2, production of prostaglandin $E_2$, and generation of pro-inflammatory cytokines in the cells. Furthermore, transduced Tat-ANX1 protein caused a significant reduction in the activation of nuclear factor-kappa B (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK). The results indicate that Tat-ANX1 inhibits the production of inflammatory response cytokines and enzymes by blocking NF-${\kappa}B$ and MAPK. Therefore, Tat-ANX1 protein may be useful as a therapeutic agent against various inflammatory diseases.

Epigallocatechin-3-gallate Inhibits Tax-dependent Activation of Nuclear Factor Kappa B and of Matrix Metalloproteinase 9 in Human T-cell Lymphotropic Virus-1 Positive Leukemia Cells

  • Harakeh, Steve;Diab-Assaf, Mona;Azar, Rania;Hassan, Hani Mutlak Abdulla;Tayeb, Safwan;Abou-El-Ardat, Khalil;Damanhouri, Ghazi Abdullah;Qadri, Ishtiaq;Abuzenadah, Adel;Chaudhary, Adeel;Kumosani, Taha;Niedzwiecki, Aleksandra;Rath, Mathias;Yacoub, Haitham;Azhar, Esam;Barbour, Elie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1219-1225
    • /
    • 2014
  • Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol molecule from green tea and is known to exhibit antioxidative as well as tumor suppressing activity. In order to examine EGCG tumor invasion and suppressing activity against adult T-cell leukemia (ATL), two HTLV-1 positive leukemia cells (HuT-102 and C91-PL) were treated with non-cytotoxic concentrations of EGCG for 2 and 4 days. Proliferation was significantly inhibited by 100 ${\mu}M$ at 4 days, with low cell lysis or cytotoxicity. HTLV-1 oncoprotein (Tax) expression in HuT-102 and C91-PL cells was inhibited by 25 ${\mu}M$ and 125 ${\mu}M$ respectively. The same concentrations of EGCG inhibited NF-kB nuclearization and stimulation of matrix metalloproteinase-9 (MMP-9) expression in both cell lines. These results indicate that EGCG can inhibit proliferation and reduce the invasive potential of HTLV-1-positive leukemia cells. It apparently exerted its effects by suppressing Tax expression, manifested by inhibiting the activation of NF-kB pathway and induction of MMP-9 transcription in HTLV-1 positive cells.

Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes

  • Seo, Won Yong;Youn, Gi Soo;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.495-500
    • /
    • 2015
  • Up-regulation of cell adhesion molecules and proinflammatory cytokines contributes to enhanced monocyte adhesiveness and infiltration into the skin, during the pathogenesis of various inflammatory skin diseases, including atopic dermatitis. In this study, we examined the anti-inflammatory effects of butein, a tetrahydroxychalcone, and its action mechanisms using TNF-α-stimulated keratinocytes. Butein significantly inhibited TNF-α-induced ICAM-I expression and monocyte adhesion in human keratinocyte cell line HaCaT. Butein also decreased TNF-α-induced pro-inflammatory mediators, such as IL-6, IP-10 and MCP-1, in HaCaT cells. Butein decreased TNF-α-induced ROS generation in a dose-dependent manner in HaCaT cells. In addition, treatment of HaCaT cells with butein suppressed TNF-α-induced MAPK activation. Furthermore, butein suppressed TNF-α-induced NF-kappaB activation. Overall, our results indicate that butein has immunomodulatory activities by inhibiting expression of proinflammatory mediators in keratinocytes. Therefore, butein may be used as a therapeutic agent for the treatment of inflammatory skin diseases. [BMB Reports 2015; 48(9): 495-500]

Immunomodulatory Effect of Pueraria lobata on the Functional Activation of Macrophages by Lipopolysaccharide Treatment (그람음성균 유래 lipopolysaccharide로 활성화된 대식세포의 기능 수행시 갈화 [Pueraria lobata (Willd.) Ohwi]의 조절작용)

  • Shen, Ting;Kim, Jong-Dai;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • Pueraria lobata (Willd.) Ohwi was investigated to check its modulatory effects on the activation of macrophages upon inflammatory conditions treatment. For this purpose, we examined several inflammatory responses such as nitric oxide (NO) production, reactive oxygen species (ROS) generation, cytoprotection and phagocytosis under the treatment of methanol extract from P. lobata (Pl-ME). Pl-ME dose-dependently blocked NO production in lipopolysaccharide (LPS)- stimulated RAW264.7 cells but not sodium prusside (SNP)-generated NO release. The NO inhibition seemed to be due to blocking inducible NO synthase (iNOS), since Pl-ME suppressed its expression in a NF-${\kappa}B$-independent manner. Similarly, this extract also effectively protected RAW264.7 cells from LPS-induced cytotoxicity. However, Pl-ME did not block ROS generation and rather it enhanced. Finally, this extract negatively modulated FITC-dextran uptake. Therefore, our data suggested that Pl-ME may be involved in negatively regulating some macrophage-mediated inflammatory responses such as NO production and phagocytic uptake.

Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells (BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.

Xanthone attenuates mast cell-mediated allergic inflammation

  • AYE, AYE;Jeon, Yong-Deok;Song, Young-Jae;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.123-123
    • /
    • 2019
  • Xanthone is a kind of polyphenolic compounds that contain a distinctive chemical structure with a tricyclic aromatic ring found in a few higher plant families e.g. gentian root. This compound had a variety of biological activity, for instance antioxidant, antibacterial, anti-inflammatory, and anticancer effects. However, the effect of xanthone on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, the aim of this study was to elucidate the anti-allergic inflammatory effects and the underlying molecular mechanism of xanthone in PMACI-stimulated human mast cells-1 (HMC-1). In this result, xanthone treatment decreased the production of histamine, pro-inflammatory cytokines such as tumor necrosis factor-a (TNF-${\alpha}$), IL-6, and IL-8 and expressions of TSLP in PMACI-stimulated HMC-cells. In addition, xanthone significantly suppressed the phosphorylation of MAPKs and the activation of NF-${\kappa}B$ signal pathway in activated mast cells. Furthermore, xanthone inhibited the activation of caspase-1, an IL-$1{\beta}$ converting enzyme, in PMACI-stimulated HMC-1 cells. These findings provide evidence that xanthone could be a potential therapeutic agent for allergy-related inflammatory disorders.

  • PDF

Pristimerin Inhibits Inducible Nitric Oxide Synthase Expression Induced by TLR Agonists

  • Kim, Su-Yeon;Heo, Sung-Hye;Park, Sin-Aye;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.60-65
    • /
    • 2019
  • Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) operating in the innate immunity. TLRs have the ability to recognize relatively conserved microbial components, which are generally referred to as pathogen-associated molecular patterns (PAMPs). The activation of TLRs signaling leads to the activation of $NF-{\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of pristimerin, which is a naturally occurring triterpenoid compound from Celastraceae plants, iNOS expression induced by MALP-2 (TLR2 and TLR6 agonist), Poly[I:C] (TLR3 agonist), or LPS (TLR4 agonist) were examined. Pristimerin suppressed the iNOS expression induced by MALP-2, Poly[I:C], or LPS. These results suggest that pristimerin can modulate TLRs signaling pathways leading to decreased inflammatory gene expression.

Heat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects via Activation of MAPK and STAT3 Pathways

  • Jeong, Minju;Kim, Jae Hwan;Yang, Hee;Kang, Shin Dal;Song, Seongbong;Lee, Deukbuhm;Lee, Ji Su;Park, Jung Han Yoon;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1248-1254
    • /
    • 2019
  • Identification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of $TNF-{\alpha}$ and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, $NF-{\kappa}B$, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of $TNF-{\alpha}$ by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.

Compound K (CK) Rich Fractions from Korean Red Ginseng Inhibit Toll-like Receptor (TLR) 4- or TLR9-mediated Mitogen-activated Protein Kinases Activation and Pro-inflammatory Responses in Murine Macrophages (고려홍삼으로부터 분리한 compound K 함유분획에 의한 대식세포의 toll-like receptor-의존성 신호전달로 활성조절 분석)

  • Yang, Chul-Su;Ko, Sung-Ryong;Cho, Byung-Goo;Lee, Ji-Yeon;Kim, Ki-Hye;Shin, Dong-Min;Yuk, Jae-Min;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • Compound K (CK), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. In this study, we isolated the CK rich fractions (CKRF) from Korean Red Ginseng and investigated the regulation of CKRF-mediated inflammatory signaling during Toll-like receptor (TLR)-mediated cellular activation. Among various TLR ligands, CKRF considerably abrogated TLR4- or TLR9-induced inflammatory signaling. Both LPS and CpG-containing oligodeoxynucleotides (CpG-ODN) stimulation rapidly activates mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinases 1/2 and p38], NF-${\kappa}B$, and expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$, and interleukin-6 in murine bone marrow-derived macrophages (BMDMs) in a time- and dose-dependent manner. Of interest, pre-treatment of CKRF in either LPS/TLR4- or CpG-ODN/TLR9-stimulated macrophages substantially attenuated the LPS-induced inflammatory cytokine production and mRNA expressions, as well as MAPK and NF-${\kappa}B$ activation. To our knowledge, this is the first description of the inhibitory roles for CKRF in TLR4- or TLR9-associated signaling in BMDMs. Collectively, these results demonstrate that CKRF specifically modulates distinct TLR4 and TLR9-mediated inflammatory responses, and further studies are urgently needed for their in vivo roles for potential therapeutic uses, such as in systemic inflammatory syndromes.