• 제목/요약/키워드: $Mg^{2+}-ion$

Search Result 1,433, Processing Time 0.036 seconds

Sputtering Yield and Secondary Electron Emission Coefficient(${\gamma}$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ Thin Film Grown on the Cu Substrate by Using the Focused Ion Beam (Cu 기판위에 성장한 MgO, $MgAl_2O_4$$MgAl_2O_4/MgO$ 박막의 집속이온빔을 이용한 스퍼터링수율 측정과 이차전자방출계수 측정)

  • Jung K.W.;Lee H.J.;Jung W.H.;Oh H.J.;Park C.W.;Choi E.H.;Seo Y.H.;Kang S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.395-403
    • /
    • 2006
  • It is known that $MgAl_2O_4$ has higher resistance to moisture than MgO, in humid ambient MgO is chemically unstable. It reacts very easily with moisture in the air. In this study, the characteristic of $MgAl_2O_4$ and $MgAl_2O_4/MgO$ layers as dielectric protection layers for AC- PDP (Plasma Display Panel) have been investigated and analysed in comparison for conventional MgO layers. MgO and $MgAl_2O_4$ films both with a thickness of $1000\AA$ and $MgAl_2O_4/MgO$ film with a thickness of $200/800\AA$ were grown on the Cu substrates using the electron beam evaporation. $1000\AA$ thick aluminium layers were deposited on the protective layers in order to avoid the charging effect of $Ga^+$ ion beam while the focused ion beam(FIB) is being used. We obtained sputtering yieds for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found th show $24{\sim}30%$ lower sputtering yield values from 0.244 up to 0.357 than MgO layers with the values from 0.364 up to 0.449 for irradiated $Ga^+$ ion beam with energies ranged from 10 kV to 14 kV. And $MgAl_2O_4$ layers have been found to show lowest sputtering yield values from 0.88 up to 0.109. Secondary electron emission coefficient(g) using the ${\gamma}$- FIB. $MgAl_2O_4/MgO$ and MgO have been found to have similar g values from 0.09 up to 0.12 for indicated $Ne^+$ ion with energies ranged from 50 V to 200 V. Observed images for the surfaces of MgO and $MgAl_2O_4/MgO$ protective layers, after discharge degradation process for 72 hours by SEM and AFM. It is found that $MgAl_2O_4/MgO$ protective layer has superior hardness and degradation resistance properties to MgO protective layer.

Effects of Selenate Ion Concentration in Nutrient Solution on the Growth and Essential Oil Content of Wormwood( Artemisia absinthium L.) (배양액 내의 Selenate 이온농도가 웜우드(Artemisia absinthium L.)의 생육 및 정유함량에 미치는 영향)

  • Park, Kuen-Woo;Lee, Yun-Jeong;Jeong, Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.264-269
    • /
    • 1997
  • This study was conducted to evaluate appropriate selenate ion concentration for the production of high functional vegetables. Sodium selenate was treated 0, 2, 4, 6 and 8mg/$\ell$ using herb nutrient solution developed by European R & D Vegetable Center in Belgium. Low level of Na2se04 concentration increased the growth of wormwood, but high selenate concentration decreased the growth. Total chlorophyll content was increased by sodium selenate. The higher selenate ion concentration in the nutrient solution, the more total chlorophyll content was. The vitamin C content in wormwood was high at 2 and 4mg/$\ell$ treatment, showing good growth, at higher concentration, however, the vitamin C content decreased. At 4mg/$\ell$ selenate ion concentration, essential oil content of wormwood was best. But higher selenate ion concentration decreased essential oil content. The uptake of Se by the plant increased with the increase of selenate ion concentration.

  • PDF

Study on the Light-Induced Mitochondrial ATPase$(F_1-ATPase)$ Activated by Iron ion in Mushroom (버섯중 철이온에 활성화된 광감응성 Mitochondrial ATPase에 관한 연구)

  • Min, Tae-Jin;Lee, Mi-Ae;Park, Sang-Shin
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.157-164
    • /
    • 1993
  • The effects of the iron ions on the light-induced mitochondrial $F_1-ATPase$ in Lentinus edodes was studied. This enzyme activity was stimulated by each of the ferric, ferrous and magnesium ion. Especially, the activity of the enzyme by 5.0 mM ferric ion increased up to 107% in comparision with control group(100%). In the presence of magnesium ion, each of ferric and ferrous ion increased the activity of the enzyme, particulary, coexistence of 0.1 mM magnesium and 5.0 mM ferric ion increased the activity up to 270% with magnesium ion dependence. The activity of the enzyme was stimulated up to 268% by 5.0 mM ferric ion in the presence of 0.1 mM magnesium and 0.1 mM ferrous ion. Therefore, the coexistence of ferrous ion did not affect the activity. From the above, we propose that light-induced mitochondrial $F_1-ATPase$ in Lentinus edodes is a $Mg^{2+}{\cdot}Fe^{3+}{\;}F_1-ATPase.$ The optimal pH and temperature for the enzyme were 7.5 and $66^{\circ}C$ respectively.

  • PDF

Formation Mechanism of Aragonite by Substitute of Mg2+ Ions

  • Choi, Kyung-Sun;Park, Jin-Koo;Ahn, Ji-Whan;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.889-892
    • /
    • 2004
  • Acicular type aragonite precipitated calcium carbonate was synthesized by carbonation reaction of $Ca(OH)_2$ slurry and $CO_2$ gas. As increasing the initial concentration of $Mg^{2+}$ ion, calcite crystal phase substantially decreased while that of aragonite crystal phase increased. According to XRD and EDS analysis, it was found that the addition of $MgCl_2$ induced the $Mg^{2+}$ ion to substitute in $Ca^{2+}$ ion site of calcite lattice then the unstabled calcite structure be resolved, consequently the growth of calcite structure is interrupted while the growth of aragonite structure is expedited.

Fabrication of Mg(OH)2 from Ferro-Nickel Slag (페로니켈 슬래그를 이용(利用)한 수산화(水酸化)마그네슘 제조방법(製造方法))

  • Park, Soo Hyun;Chu, Yong Sik;Song, Hun;Lee, Jong Kyu;Seo, Sung Kwan
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • Ferro-Nickel slag is a byproduct of Ferro-Nickel manufacturing process. Ferro-Nickel slag mostly discarded or used as aggregates despite having useful ingredients such as magnesium oxide and silicon oxide. This study tried to extract process for Mg ion using $H_2SO_4$ solution. And remove impurities and get high purity $Mg(OH)_2$ using NaOH. Mg ion was extracted with the Fe ion and other Ferro-Nickel slag composition by $H_2SO_4$ solution. It is important to control the pH because remove impurities and obtain high-purity $Mg(OH)_2$. The impurities were removed by precipitation of the hydroxides. After this process, we added NaOH and high-purity $Mg(OH)_2$ was obtained.

A New TEM Observation of the Copper Precipitate in High Strength Al-Cu-Mg Alloy (고강도 알루미늄 합금(Al-Cu-Mg)에서 새로운 Cu 석출물의 TEM 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.47-55
    • /
    • 2006
  • In this paper a transmission electron microscope (TEM) observation of fine Cu precipitates distributed randomly in Al-2.5Cu-1.5Mg wt.% alloy is first reported. This new observation happened to occur when an ion milling was peformed to remove oxides on the specimen, particularly, aged 100 hours at $150^{\circ}C$. Meanwhile the oxides were identified to be $Cu_2O$ particles. For this work involved with analysis of diffraction rings, the formulation of the electron diffraction rings pattern for powder particles was made. Finally the significance of this unexpected ion milling effort on the alloy was discussed

Synthesis of Poly(N-methylol Methacrylamide/Vinyl Sulfonic Acid) Hydrogels for Heavy Metal Ion Removal

  • Yakar, Arzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3063-3070
    • /
    • 2014
  • In this study, poly(N-methylol methacrylamide) (NMMAAm) and poly(N-methylol methacrylamide/vinyl sulphonic acid) (NMMAAm-VSA) hydrogels were synthesized by $^{60}Co-{\gamma}$ ray irradiation at an ambient temperature. The graphs belonging to the gelation percent- percent-dose and swelling curves were drawn by using data which were obtained from water and different pH solutions. Characterization of hydrogels was performed by FTIR and DSC-TGA analysis. Heavy metal ion ($Ni^{2+}$, $Co^{2+}$) removal capacities of hydrogels were investigated in aqueous solutions, which had different concentrations (100-1500 mg/L). In metal ion removal studies, pH value of aqueous medium was kept constant at 5.0. Maximum metal ion removal values were obtained for NMMAAm-VSA (1:3 mole ratio) hydrogels. Metal ion removal capacities of NMMAAm-VSA (1:3 mole ratio) hydrogels were found as 82 mg/g and 98 mg/g for $Ni^{2+}$ and $Co^{2+}$ ions, respectively.

Study of the Influence of Heavy Metal Ions(Cu, Cr, Pb, Zn) on Biochemical Oxygen Demand (BOD 測定에 影響을 미치는 重金屬이온에 關한 연구)

  • Choi, Taek-Pyul;Yun, O-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1983
  • The Biochemical Oxygen Demand(BOD) indicates that microbes are proliferating or that oxygen is being spent by breathing action when examining water under the same aerobic condition. In this research of the mesurement of BOD are the poisonous elements of heavy metal ions such as Cu-ion, Cr-ion, Pb-ion and Zn-ion. They exert an unfavorable influence in the analysis of BOD and research was performed to provide certain data of minimum negative influence by the poisonous matters. The results of the research confirm that heavy metal ion(Cu, Cr, Pb, Zn) do direct an influence upon the normal growth of aerobic microbes in actual tests of chemical analysis of portable water or sewage. The most critical concentration for a negative effect on lowering oxygen quantity and disturbing the aerobic mocrobes normal growth was found to be 0.01 mg/l. Therefore, test results are not valid if the heavy metal concentration is to or greater than 0.0mg/l, To improve comprehension through out the research the author uses the following abbreviations: 1. The Cu-ion is to be excluded before experimental analysis if it is over 0.01mg/l inorder to obtain a real value for the BOD. 2. The Cr-ion is to be excluded before experimental analysis if it is over 0.01mg/l in order to obtain a real value for the BOD. 3. The Pb-ion is to be excluded before experimental analysis if it is over 0.01mg/l in order to obtain a real value for the BOD. 4. The Zn-ion is to be excluded before experimental analysis if it is over 0.01mg/l in order to obtain a real value for the BOD.

  • PDF

Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process (Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구)

  • Lee, Sang Ho;Kim, Pan Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

Removal of Ammonia Nitrogen, Manganese and Arsenic in The Ion Exchanged Natural Zeolite (이온 치환된 천연 제올라이트를 활용한 암모니아성 질소, Mn, As의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.237-245
    • /
    • 2019
  • Ammonia nitrogen is well known as a substance that causes the eutrophication with a phosphorus in the water, because it is contained in the industrial wastewater, agricultural and the stockbreeding wastewater. In addition, manganese (Mn) and arsenic (As) are included in the mine treated water, etc., and are known as a source of water pollution. Natural zeolites are used to remove ammonia nitrogen in water but it have a low adsorption capacity. In order to improve the low adsorption capacity of the natural zeolite, ion substitution was carried out with $Na^+$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$. The adsorption capacity and removal rate of ammonia nitrogen ($NH_4-N$) were the highest at 0.66 mg/g and 89.8% in $Na^+$ ion exchanged zeolite. Adsorption experiments of Mn and As were performed using ion exchanged zeolites. Ion exchanged zeolite with $Mg^{2+}$ showed high adsorption capacity and removal rates of Mn and As.